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1
GENERAL INTRODUCT ION

Consider the case of an elderly man, Albert, who has fallen off his
bicycle because of a reckless scooter driver, and is taken to hospital.
Albert’s physical injuries do not seem to be severe, and he is soon re-
leased. After some weeks, Albert’s wife contacts the hospital, because
she thinks his memory has worsened. Albert himself is not aware of
any changes. A neurologist sends Albert to a clinical neuropsycholo-
gist for a neuropsychological assessment. The clinical neuropsycholo-
gist has to decide between several options. Is Albert’s memory indeed
bad, and is this consistent with a traumatic brain injury from his acci-
dent? Is Albert’s wife perhaps overly worried, and is Albert’s memory
consistent with what would be expected for a man of his age? Or is
Albert’s memory bad, and is this part of a larger problem, perhaps a
disorder like Alzheimer’s disease?

It is important to Albert, his wife, and the hospital that the neu-
ropsychological assessment is as reliable as possible. If Albert’s wife
is indeed overly worried, this should be discovered, so these worries
can be resolved. If Albert is suffering from a traumatic brain injury,
this should be discovered so the hospital can further investigate this
injury (Maas, Stocchetti, & Bullock, 2008). If Albert is suffering from a
disorder like Alzheimer’s disease, this should be discovered so Albert
can start with treatment (Small et al., 1997). It is therefore crucial that
the neuropsychological assessment is successful in providing clarity
to all parties.

Outside clinical practice, neuropsychological assessments are also
performed in research. This may be done in studies that evaluate a
new treatment, for example, to ameliorate the symptoms of demen-
tia. Neuropsychological assessments are also used to detect adverse
effects of treatments on cognitive functioning. Cognitive functioning
may be affected by a wide variety of pharmaceutical treatments, for
example psychiatric drugs (Moore & O’Keeffe, 1999) or drugs that
are aimed at a different target entirely, like chemotherapy (de Ruiter
et al., 2011), and non-pharmaceutical treatments such as deep brain
stimulation (Smeding, Speelman, Huizenga, Schuurman, & Schmand,
2006), or surgery of the brain (Spencer & Huh, 2008) or heart (Selnes
et al., 2012). In studying these treatments, it is important that the
neuropsychological assessment is highly reliable, because otherwise,
harmful side effects may be overlooked.

Studies may also use neuropsychological assessments to evaluate
whether cognitive functions are impaired in a particular disorder, be
it a disorder of the brain like schizophrenia (Schaefer, Giangrande,
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2 general introduction

Weinberger, & Dickinson, 2013), or a disorder that may indirectly af-
fect cognition, like liver cirrhosis (O’Carroll et al., 1991) or diabetes
(Cheng, Huang, Deng, & Wang, 2013). If this is the case, researchers
may study what characteristics of the patients predict which patients
are affected, as some cognitive problems for example primarily occur
in older patients. The reliability of the neuropsychological assessment
is again critical in identifying those with cognitive impairment, and
those without.

The goal of this thesis is to improve the reliability of neuropsycho-
logical assessment, specifically by improving the normative compari-
son procedure. This thesis is embedded in the Advanced Neuropsy-
chological Diagnostics Infrastructure (ANDI) project. This thesis dis-
cusses multiple statistical methods that were developed for the ANDI
project to improve normative comparisons. In this chapter, several key
concepts are introduced, and the specific goals for the ANDI project
are outlined. Then, an overview of the remaining chapters is given.

1.1 what is neuropsychological assessment?

In clinical neuropsychology, patients are assessed to characterize their
cognitive functioning. Subjective cognitive complaints, an accident or
stroke, or a disorder like Parkinson’s disease are all indications that
cognitive functioning may be impaired, and can thus be reasons for
a neuropsychological assessment (Lezak, Howieson, Bigler, & Tranel,
2012). This type of assessment is standardized, in order to make the
results comparable between different clinicians and patients. There-
fore, standardized neuropsychological tasks are used, which may con-
sist of memorizing a message, naming objects in pictures, enumerat-
ing as many words starting with a particular letter as possible within
one minute, or tracing a pattern with a pencil (Strauss, Sherman, &
Spreen, 2006). Each of these tests is designed to tap into a different
part of cognitive functioning, such as memory, psychomotor skills or
attention. By measuring these cognitive functions, the neuropsychol-
ogist can decide whether a patient’s cognition is impaired. The goal
of the ANDI project and this thesis is to improve the precision with
which this decision is made.

1.1.1 Normative comparisons

To decide whether a particular score on a test is indicative of impair-
ment, a certain reference standard has to be used. For almost all neu-
ropsychological tasks, there is no score that can be considered indica-
tive of impairment in an absolute sense. Rather, patients’ test scores
are considered relative to those obtained by a group of healthy people
(Crawford & Garthwaite, 2002), typically called a norm group or nor-
mative sample. If a patient’s test score is lower than those obtained by
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1.1 what is neuropsychological assessment? 3

the majority of healthy people, this is an indication for impairment.
To be able to make such a judgment, called a normative comparison,
data from many healthy participants who have completed neuropsy-
chological tests are needed. Therefore, one of the goals of the ANDI
project is to establish a large normative dataset, to improve normative
comparisons.

1.1.2 Multivariate normative comparisons

The idea for the ANDI project came in part from the introduction of
a new statistical technique for normative comparisons, called multi-
variate normative comparisons. Traditionally, normative comparisons
are performed for a single neuropsychological test at a time, and
are therefore univariate (Huizenga, Smeding, Grasman, & Schmand,
2007). This univariate approach has two disadvantages. The first is
that it does not match clinical intuition, as results on tests are not
interpreted in isolation by clinicians, but are interpreted in the light
of results on other tests. For example, a low score on two delayed
memory tests is interpreted differently when found in a patient with
high scores on all other tests, than when found in a patient with low
scores on all tests.

The second disadvantage is an increased number of times that a
patient is incorrectly classified as cognitively impaired, i.e., that the
assessment indicates impairment, while the patient is in fact not cog-
nitively impaired. The aim is to keep the number of persons that are
mislabeled like this low. However, for each normative comparison,
there is a probability that this comparison will by chance indicate im-
pairment, which is called a false positive result. This is the case even
for a cognitively healthy person. With univariate normative compar-
isons, a comparison is performed for every neuropsychological test
score, and the probability of at least one false positive result for a
healthy person becomes larger and larger by chance when additional
normative comparisons continue to be made. For example, a healthy
person has a higher chance of a false positive result if this person is
given many opportunities, in tests of verbal memory, executive func-
tions, motor speed, attention, naming, and fluency. This risk is lower
if only a single test is administered. There is no good way of know-
ing for a new patient whether a finding of cognitive impairment is
incorrect or not, and if no steps are taken to control the number of
times that incorrect classifications are made, many healthy people
may inadvertently be labeled as cognitively impaired by univariate
comparisons (Binder, Iverson, & Brooks, 2009).

These disadvantages are not found in multivariate normative com-
parisons. First, multivariate normative comparisons analyze the en-
tire profile of test scores, similarly to how a clinician takes into ac-
count the whole profile of scores (Huizenga et al., 2007). This means
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4 general introduction

that the analysis takes into account whether the patient’s profile of
scores is common in healthy participants. For example, the combina-
tion of a very high score on immediate recall of words and a low score
on an attention test is common among healthy people. The combina-
tion of a very high score on immediate recall of words and a low score
on recall of words after 30 minutes is something that is not observed
in healthy people. This profile of scores could indicate impairment of
memory storage.

Second, multivariate normative comparisons always provide a sin-
gle comparison. This means that if a profile of twenty-five test scores
is tested in a normative comparison, this entails a single comparison,
just like a profile of five test scores would. Because there is only a sin-
gle comparison, the probability of finding a false positive result, and
thus incorrectly classifying a cognitively healthy person as cognitively
impaired, is under control, no matter how many neuropsychological
test scores are entered into the comparison.

One problem for multivariate normative comparisons is that it re-
quires that the healthy people in the normative group have completed
multiple tests. Ideally, they would have completed all the same neu-
ropsychological tests that the patient completes in the assessment.
This type of normative data is not available. Therefore, one of the
goals of the ANDI project and this thesis is to provide normative
data from healthy participants who have completed multiple tests, in
order to facilitate the implementation of multivariate normative com-
parisons.

1.1.3 Demographic corrections

Another important aspect where normative comparisons can be im-
proved is the area of demographic corrections. When evaluating a
patient’s scores for the presence of a cognitive impairment due to a
disorder, the cognitive impairment is best detected when the healthy
participants in the normative group are similar to the patient in char-
acteristics unrelated to the disorder. What this means is that a neu-
ropsychological assessment for a 72-year-old patient is most reliable
when we compare his or her scores to those obtained by healthy 72-
year-olds. Such corrections are commonly performed for age. How-
ever, level of education also predicts cognitive test scores. Therefore,
we ideally compare test scores from patients with low education to
those obtained by healthy people with low education, to increase sen-
sitivity. Sex generally plays a smaller role, but there may be a small
increase in sensitivity if male patients are compared to healthy men,
and female patients are compared to healthy women (Lezak et al.,
2012). Which demographic variables to correct for depends on the
type of test used (de Vent, Agelink van Rentergem, Murre, ANDI
Consortium, & Huizenga, 2016a, this thesis).
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1.1 what is neuropsychological assessment? 5

The available normative data for neuropsychological tests rarely
allow demographic correction for age, sex, and level of education. In-
stead, normative data may be available for different ages, but not for
different levels of education and sexes. Also, because demographic
corrections require many different participants, data may not be avail-
able for individual ages. This means that, for example, a 72-year-old
patient has to be compared to a group of 70 to 80-year-olds, which
decreases sensitivity (Testa, Winicki, Pearlson, Gordon, & Schretlen,
2009). Therefore, one of the goals of the ANDI project and this thesis
is to provide normative data from large numbers of healthy partic-
ipants who have completed neuropsychological tests and for whom
age, sex, and level of education is known, in order to facilitate more
precise demographic corrections.

1.1.4 Online availability

A third major theme of this thesis and the ANDI project is using
internet-based technology to aid clinical neuropsychology.

Normative comparisons for a single test that are corrected for age
are typically performed by looking up the patient’s score in a printed
table of age bins and scores. Scores for different ages, sexes, and lev-
els of education become more difficult to tabulate and to look up.
The same is true for multivariate normative comparisons: Multivari-
ate normative comparisons cannot be easily performed with printed
tables, as there are many dimensions if there are multiple tests in-
volved. One solution is to no longer look up the results by hand, but
to let computers calculate the results (Miller & Barr, 2017). Therefore,
one goal of the ANDI project is to build a website on which clinicians
can perform normative comparisons of their patient data. This allows
clinicians to use these statistically sophisticated techniques anywhere,
and allows us to update the procedures as new data and methods be-
come available.

Another advantage of using the internet is that it becomes easy
to share information with a large number of clinicians and scientists.
The normative comparison procedures described in this thesis are in
principle not restricted to the field of clinical neuropsychology. There-
fore, one could take the software and apply it in other fields of psy-
chology or in other disciplines, such as medicine. To facilitate this,
the computer code for the methods developed in this thesis and that
are used in the ANDI project are freely available online. A second
advantage of sharing the code of the ANDI project is transparency
(Poldrack & Gorgolewski, 2014). This means that the implementation
of the methods described in this thesis are also available to any user
or programmer who wants to review and criticize the method (Nosek
et al., 2015).
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6 general introduction

1.2 overview of this thesis

In the second chapter, a method is described for establishing a norma-
tive dataset that fits the goals outlined above. This method is based on
the combination of data from healthy people who have already taken
part in research, for example as a participant in a control group in
a clinical study, or as a participant in an epidemiological community
study. By combining data from multiple studies, it becomes possible
to obtain large numbers of participants, who are demographically di-
verse, and have completed many different tests. This chapter explains
standardized procedures for removing outlying values, determining
what demographic variables to use in corrections, and finding ap-
propriate transformations that facilitate normative comparisons. Also,
this chapter describes how these methods have been applied to data
that were generously donated by the ANDI consortium, to form the
ANDI database. A description of the contents of the ANDI database
is also given.

In the third chapter, multivariate normative comparisons are de-
scribed, and are extended to include demographic corrections. Also,
it is explained how an aggregate database like the one described in
chapter two can be used for normative comparisons. An aggregate
database is different from standard normative datasets in that there
may be differences between contributing studies in how participants
perform. In this chapter, a multivariate multilevel regression model
is introduced that resolves this issue. A second advantage of this
model is that it can be fitted even when many data are missing. Miss-
ing data are very common in aggregate data, as some test variables
may be completely absent from a particular study. In a simulation
study, the appropriateness of the multivariate multilevel regression
method is demonstrated. With this method, multivariate normative
comparisons with demographic corrections can be made for the most
common tests. Another issue related to missing data in aggregate
databases, i.e. missing overlap, is left unsolved in this chapter. This
issue is addressed in the next chapter.

In the fourth chapter, the method of the previous chapter is ex-
tended to solve the issue of missing overlap. If there are two tests
that have not been administered together in any of the studies, there
is no overlap between the two variables, and it becomes difficult to es-
timate a multivariate model. This situation would arise with tests that
are less commonly administered, as it is more likely that these tests
have not been administered together in any of the studies that are
included in the aggregate database. Therefore, this prevents the inclu-
sion of less commonly administered tests in the multivariate norma-
tive comparison. Two solutions are tested in this chapter, using either
a multiple imputation or a factor model approach. This chapter ends
with the recommendation that the problem of missing overlap can
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1.2 overview of this thesis 7

best be resolved using a factor model, but only if the factor model is
an appropriate description for the included tests. Therefore, the goal
of the next chapter is to find an appropriate factor model.

In the fifth chapter, different factor models for neuropsychological
tests are compared. These models have been formulated in the litera-
ture, and make different distinctions in which test variables measure
the same cognitive function. Some models are complex and contain
many different cognitive functions, while others are simpler. In this
chapter, a factor meta-analysis (Cheung & Chan, 2005) is performed.
In this analysis, factor models are fitted to a correlation matrix that is
pooled across multiple studies conducted worldwide. From this anal-
ysis, a single best fitting model is identified. Next, factor models are
fitted to data from the ANDI database. Again, the best fitting factor
model is identified. Together with the method described in the fourth
chapter, this factor model allows for multivariate normative compar-
isons with more tests than was possible with the method from the
third chapter.

In the sixth chapter, multivariate normative comparisons using ANDI
are applied to address a clinical research question. The goal of this
study is to classify patients with Parkinson’s disease as either cog-
nitively impaired or not, since impairment at an early stage of the
disease is known to predict later development of Parkinson’s disease
dementia. With follow-up data that were gathered after three and
five years, the performance in the prediction of dementia of the nor-
mative comparison procedure described in this thesis is compared to
the performance of previously used methods. This thus provides an
empirical test of the methods developed in this thesis.

In the seventh chapter, univariate normative comparisons using an
aggregate database are discussed. As mentioned before, univariate
comparisons can lead to incorrect classifications of cognitive impair-
ment when many different comparisons are performed for different
test variables. Therefore, if there is a scenario in which individual
test scores are of interest rather than profiles of scores, there needs to
be some kind of correction for false positives. In this chapter, several
corrections that are described in the literature are discussed, and it
is shown how they might be applied with an aggregate normative
database. A new method is developed especially for this purpose.

In the eighth chapter, results of the previous chapters are summa-
rized, and limitations and potential solutions are discussed. Possible
extensions of the methods and the database, and possible applica-
tions outside the current scope of the ANDI project are discussed.
The thesis ends with a consideration of how the ANDI project relates
to recent developments in psychology.
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2
ADVANCED NEUROPSYCHOLOGICAL
D IAGNOST ICS INFRASTRUCTURE (ANDI ) : A
NORMAT IVE DATABASE CREATED FROM
CONTROL DATASETS

2.1 abstract

In the Advanced Neuropsychological Diagnostics Infrastructure (ANDI),
datasets of several research groups are combined into a single database,
containing scores on neuropsychological tests from healthy partici-
pants. For most popular neuropsychological tests the quantity and
range of these data surpasses that of traditional normative data, thereby
enabling more accurate neuropsychological assessment. Because of
the unique structure of the database, it facilitates normative compar-
ison methods that were not feasible before, in particular those in
which entire profiles of scores are evaluated. In this article, we de-
scribe the steps that were necessary to combine the separate datasets
into a single database. These steps involve matching variables from
multiple datasets, removing outlying values, determining the influ-
ence of demographic variables, and finding appropriate transforma-
tions to normality. Also, a brief description of the current contents of
the ANDI database is given.

2.2 introduction

An important element of neuropsychological practice is to determine
whether a patient who presents with cognitive complaints has abnor-
mal scores on neuropsychological tests. In the diagnostic process, a
number of neuropsychological tests are administered and the test re-
sults of the patient are compared to a normative sample, that is, a
group of healthy individuals which resemble the patient in character-
istics unrelated to the suspected disease or trauma. In this manner,
a clinician can determine whether the patient’s test scores should be
interpreted as abnormal, and whether or not the patient may have a
disorder.

Traditionally, scores are compared to normative data published in
the manuals of the neuropsychological tests. However, there are a
number of limitations associated with this approach. First, normative

0 Published as: de Vent, N. R.*, Agelink van Rentergem, J. A.*, Schmand, B. A., Murre,
J. M. J., ANDI Consortium & Huizenga, H. M. (2016). Advanced Neuropsycholog-
ical Diagnostics Infrastructure (ANDI): A normative database created from control
datasets. Frontiers in Psychology, 7(1601), 1-10.
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10 andi : a normative database created from control datasets

data of neuropsychological tests might have become outdated and
no longer represent the patients we see today (Strauss et al., 2006).
Second, many published tests lack norms for the very old popula-
tion (80+; Whittle et al., 2007}. Third, some tests do not come with
norms at all, and clinicians have to make do with norms from other
countries or with norms they themselves have gathered (Crawford
& Garthwaite, 2002). Fourth, normative scores from test manuals are
often only corrected for age but not for other demographic variables,
such as level of education or sex (Lezak et al., 2012). Fifth, normative
data are typically collected for one test at a time, as part of its con-
struction and standardization process. As a result, mostly univariate
but not multivariate data are available. Recent studies have shown
that multivariate normative comparison methods are more sensitive
to deviating profiles of test scores than multiple univariate analyses
(Crawford & Garthwaite, 2002; Huizenga et al., 2007; Smeding, Speel-
man, Huizenga, Schuurman, & Schmand, 2011; Schmand, de Bruin,
de Gans, & van de Beek, 2010; Castelli et al., 2010; Valdés-Sosa et al.,
2011; González-Redondo et al., 2012; Broeders et al., 2013; Cohen et
al., 2014; Su et al., 2015). Moreover, new univariate methods for nor-
mative comparisons, that use a resampling technique, require mul-
tivariate normative data as well (Huizenga, Agelink van Rentergem,
Grasman, Muslimovic, & Schmand, 2016).

Because of the limitations outlined above, we started the Advanced
Neuropsychological Diagnostic Infrastructure project (www.andi.nl1).
Our goal was to overcome these limitations by creating a large database
from a demographically diverse group of healthy participants who
completed several neuropsychological tests. This database will be ac-
companied by an interactive website where clinicians and researchers
can upload their patients’ scores. Interactive software on the web-
site compares the patients’ scores to demographically corrected norm
scores from the database using advanced multivariate and univariate
methods (Huizenga et al., 2007; Huizenga et al., 2016). The ANDI
database and accompanying website will simplify normative compar-
isons, and will provide more sensitive and specific normative com-
parisons.

In this article, we describe the step-by-step procedure of the ANDI
normative database construction, so that the procedure can be repli-
cated in other countries and in other fields of study that also rely
on normative comparisons, such as clinical psychology or personnel
psychology. We also describe current contents of the ANDI database.
Finally, we address the advantages and potential limitations of the
ANDI database in comparison to other normative data.

We illustrate these steps using Rey’s Auditory Verbal Learning Test
(AVLT; Rey, 1958), an internationally well-known test. It is one of the

1 To avoid confusion: this project is not related to ADNI, which stands for Alzheimer’s
Disease Neuroimaging Initiative
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tests that are also included in the ANDI database. The AVLT mea-
sures memory and learning (Lezak et al., 2012; Strauss et al., 2006).
In its simplest form participants are presented with a list of 15 nouns,
which they are asked to reproduce immediately (in any order). This
is repeated five times. Twenty minutes after the five learning trials,
there is a delayed recall condition in which participants are asked
again which words they remember. Finally, there is a multiple choice
recognition condition.

2.3 construction of the andi database

For every neuropsychological test variable included in the ANDI database,
a standardized automatized stepwise procedure was followed. A flow
chart summarizing all steps can be found in Figure 1. In the following
paragraphs, we explain the rationale for the steps and how they were
applied.

2.3.1 Gathering data

The first step was to collect a large amount of normative data on
neuropsychological tests. In cooperation with a group of researchers,
the ’ANDI consortium’ (see www.andi.nl for a list of members) was
created. The consortium members donated data of healthy control
subjects, which they had collected in predominantly clinical research
projects. All studies were approved by local ethics committees. All
participants had sufficient knowledge of the Dutch language to com-
plete the tests. All data were anonymized and could not be traced
back to individual participants.

Example: Data on the (Rey) Auditory Verbal Learning Test (AVLT)
from 32 research projects were donated, yielding data from a total of
5121 participants.

2.3.2 Integrating data

We created separate files for all neuropsychological tests. Each file
contained multiple test variables. Also, the demographic variables
age, sex, and level of education, were included for each participant.
Only cases with scores on all three demographic variables were in-
cluded. For each study a unique study identifier was added.

Example: One file for the AVLT was created. In this file data from
all test variables were collected. Thus the variable AVLT-1 contained
all data on the first trial of the AVLT, the variable AVLT-2 contained
data on trial 2, and so on.
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Figure 2.1: Flow chart describing all steps of the database construction.
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2.3.3 Removing impossible scores

After merging the data, we checked whether all scores were valid. In-
valid scores might be coding errors, or deviant scores observed only
in patients with severe pathology. If such invalid scores would not
be removed from the database, the variance in scores would be over-
estimated, which would cause a diminished sensitivity to detect im-
pairments. However, we also wanted the database to be an accurate
representation of variability in the healthy population. This implied
that the removal criteria should not too strict.

First, we removed the most extreme values. These were scores that
were either due to an administrative error or could not come from
a healthy participant. For every variable of each neuropsychological
test, upper and lower ’extreme borders’ were defined. The upper bor-
der was set at the maximum possible score. This removed administra-
tive errors. The lower border was set at the worst score a participant
can obtain while still deemed cognitively healthy. To this end, we se-
lected the raw score corresponding to the lowest published percentile
of the worst performing normative sample. The exact percentile de-
pended on the resolution of the published norm table, but generally
a score corresponding to the first percentile was selected. Thus, for a
test that has declining scores with increasing age, the raw score that
was obtained from the lowest percentile of the oldest participants was
defined as the lower extreme border.

If no information from manuals was available, which fortunately
was the case for a small number of tests, we asked members of the
ANDI consortium to provide acceptable borders. On average 0.48%
of scores were removed for the 183 variables. All extreme borders can
be found in the ANDI background documentation (www.andi.nl).

Example: The upper border of the AVLT delayed recall is 15. Scores
above 15 are impossible and thus were removed. The lower border
of AVLT delayed recall was set at 3 after consulting the consortium.
Even for the worst performing of the cognitively healthy participants,
a score lower than three words was not expected. Such extreme scores
could indicate pathology or a typing error, and therefore should be
removed. A total of 217 AVLT delayed recall scores (4.5%) fell below
the lower extreme border and were removed. No scores exceeded the
upper extreme border.

2.3.4 Model selection

Next, we used a regression approach to remove demographically cor-
rected outliers. Because a person’s neuropsychological test scores de-
pend to some extent on his or her demographic characteristics, not
all outlying scores can be found by defining a single criterion value
for all scores. For example, scores that are abnormal in young partic-
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ipants may not at all be abnormal in healthy elderly. To define these
outliers we, therefore, first wanted to partial out the effects of age,
sex, and level of education.

Because the data came from multiple studies, the scores are not
strictly independent. For example, some studies may give higher com-
pensation to their participants and these may, therefore, show better
scores due to higher motivation. As a second example, some stud-
ies may use more stringent exclusion criteria than other studies, and
therefore may show higher scores due to the stricter selection of par-
ticipants. We took variability between studies into account while esti-
mating the effect of age, sex, and level of education using a multilevel
regression approach2 (Curran & Hussong, 2009).

The demographic variables were age in years, sex, and level of edu-
cation. Level of education was coded on a seven-point scale, which is
commonly used in the Netherlands (Verhage, 1964). This scale is simi-
lar to UNESCO’s ISCED scale (UNESCO, 2012) on which 1 stands for
’no education’ and 7 stands for ’university degree’. Although this is
an ordinal scale, we treated it as an interval scale and estimated the
linear effect of education in order to avoid estimating separate param-
eters for all levels of education. To determine which effects to include,
we first made a selection on the basis of how much demographic in-
formation was available, and second, a selection on the basis of which
effects were statistically important enough to include in the model.
These two selection steps are discussed in more detail below.

part 1 : selection of effects based on availability of de-
mographic data . To estimate the effects of demographic vari-
ables, a reasonable range of values on these variables is necessary.
However, the range of values was narrow for some variables in the
donated data. For example, for some tests only scores from higher ed-
ucated people were available, which implied that the education effect
for these tests could not be estimated.

To find out which effects could plausibly be estimated, we tabu-
lated age, sex and level of education. If the median number of par-
ticipants in each cell was lower than 5, we considered this too sparse
to estimate the corresponding effect. Because age is continuous, we
temporarily created age categories, namely individuals younger than
55, aged between 55 and 75 years, and 75+.

Example: In Table 1, an example of this tabulation is given for the
AVLT - delayed recall. The effect of sex is estimable, as the minimum
cell count across sexes is 2249. The effect of age is considered es-
timable, as the median cell count across age categories is 1120. Sim-
ilarly, the effect of education is considered estimable, as the median
cell count across education categories is 335.

2 For variables with data from only one study, a single level regression model was
fitted.
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Table 2.1: Tabulation of Number of Participants by Sex, Age categories, and Level of
Education for the AVLT-Delayed Recall Variable. If the Median (or Minimum
in the Case of Sex) Criterion is Not Met for an Effect, this Effect Cannot be
Included in the Model.

Sex, N per category Age, N per category Level of education, N per category

2249 (Men) 993 (Younger than 55) 17 (1)

2349 (Women) 2485 (55-75 year-olds) 323 (2)

Minimum: 2249 1120 (Older than 75) 119 (3)

Median: 1120 938 (4)

1755 (5)

1111 (6)

335 (7)

Median: 335

part 2 : statistical selection of effects to be included
in the model . Even if there are sufficient observations to esti-
mate the effect of a demographic variable, it does not necessarily im-
ply that the variable has an effect on the test scores. To determine
which effects to include in a regression model, we used a backward
selection procedure, removing effects if removal resulted in a lower
Akaike Information Criterion (AIC; Cohen, Cohen, West, & Aiken,
2003).

Figure 2 shows the proportions of variables for which effects were
included. As can be seen in Figure 2, there were sufficient data to
estimate a sex effect for all variables, but in half of the cases, sex was
found not to be predictive. Education and age effects were frequently
included, if enough data were available to estimate them. The model
that was selected for each variable can be found in the ANDI back-
ground documentation (www.andi.nl).

Example: For the AVLT-delayed recall the best model included all
three effects.

2.3.5 Removing demographically corrected outliers

After fitting and selecting the appropriate models to correct for de-
mographic characteristics, we used the residuals rather than the raw
scores to decide whether scores were abnormal. These residuals rep-
resent the distance of the observed scores from the scores that are
expected on the basis of the demographic characteristics. A common
criterion for outlying values is three standard deviations from the
mean. However, a few outlying scores can increase the standard de-
viations considerably. Therefore, we used the median absolute devi-
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Figure 2.2: Proportion of variables for which the demographic effects were in-
cluded in the models. In dark gray, effects that could be included after
accounting for sample size constraints. In light gray, effects that were
included after using the Akaike Information Criterion (AIC) to select
effects.

ation from the median (MAD; Leys, Ley, Klein, Bernard, & Licata,
2013), which is more robust to outliers than the standard deviation.
As a cutoff criterion, we used 3.5 MAD rather than the more common
three standard deviations, as we intended to include as much as pos-
sible of the distribution of normal scores. On average 0.53% of scores
were removed for the 183 variables.

Example: For the AVLT-delayed recall, no scores exceeded the 3.5
MAD cut off criterion.

note on the removal procedure . If a participant’s score on a
test is outlying, one might either remove only this score, remove all of
the participant’s scores on this test, or remove all of the participant’s
scores on all tests. We opted for the first possibility, because removing
scores on more variables than just the outlying one implies that we
can identify the participant’s cognitive functioning as the cause of the
outlying value, which we cannot. The source may just as well be an
administrative error.

2.3.6 Normality

The primary aim of the ANDI database is to facilitate normative com-
parisons. In both univariate and multivariate normative comparison
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methods, normality of the dependent variables is usually assumed
(Crawford & Howell, 1998; Huizenga et al., 2007). Not all neuropsy-
chological test scores, however, are normally distributed. This may be
due to effects of demographic variables. For example, if young partici-
pants’ scores are normally distributed with a low mean reaction time,
and if old participants’ scores are normally distributed with a high
mean reaction time, then the raw scores for both groups combined
may be bimodal. However, if the effect of age is partialled out in a
regression analysis, and if the residual scores of this regression analy-
sis are used instead of raw scores, such non-normality is no longer an
issue. However, residual scores may still be non-normal. For example,
some tests show a ceiling effect regardless of the demographic vari-
ables. In those cases, a normalizing transformation is recommended
to meet the assumption of normality (Crawford, Garthwaite, Azzalini,
Howell, & Laws, 2006)}.

Scores are often transformed to normality (Jacqmin-Gadda, Sibil-
lot, Proust, Molina, & Thiébaut, 2007) using transformations such as
the square root or the reciprocal. These can both be written as power
transformations, raising to the power of 0.5 and -1, respectively. Al-
though these transformations are frequently used, they do not nec-
essarily lead to the best approximation of normality. Therefore, we
used the Box-Cox procedure (Box & Cox, 1964; Sakia, 1992) to find
the best power transformation. For example, the procedure may find
that the best transformation is raising to the power 0.563. The Box-
Cox procedure requires a large dataset, which is not often available
in neuropsychology (Crawford et al., 2006). Fortunately, the size of
the ANDI database allows this Box-Cox procedure.

Because in ANDI, patients will be compared to demographically
corrected norms, we wanted the residuals (i.e., scores corrected for
the effects of demographic variables) to be normally distributed. The
algorithm therefore searches among several power transformations
of the raw data (e.g. 0.506, 0.507, 0.508 etc.), and selects the power
transformation resulting in the best approximation to normally dis-
tributed residuals. The power transformation that was selected for
each variable can be found in the ANDI background documentation
(www.andi.nl).

The Box-Cox procedure is highly flexible, but our application re-
quired a few adjustments. First, all scores have to be larger than
0. Therefore, if there were scores that were either negative or 0, a
constant was added (e.g. if the greatest negative value was -5 we
added the constant 5.001) to make all scores positive. Second, if the
best power transformation turned out to be negative, raising the raw
scores to this power flipped the order of values, i.e. the worst scores
became the best and vice versa. To reverse this change of ordering,
these transformed values were multiplied by -1 to restore their orig-
inal order. Third, we included study as a predictor in the regression
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model, because we wanted the residuals to be normal within every
study instead of normal over studies. Fourth, power transformations
may result in tiny or huge values, which may be difficult to interpret.
Therefore, we first Box-Cox transformed all scores, and then standard-
ized all these transformed scores to the familiar z-scale with mean
0 and standard deviation 1. Finally, all standardized transformed z-
scores were merged into a single dataset to create the final ANDI
database.

Example: For AVLT-delayed recall, the best Box-Cox power trans-
formation was 0.75, implying that when raw scores on AVLT-delayed
recall were raised by the power 0.75, the residuals were as normally
distributed as possible. In Figure 3 and 4, it can be seen that the resid-
uals were somewhat skewed before transformation and were neatly
normally distributed after transformation.

When a patient’s scores are compared to the scores in the database,
the patient’s scores are automatically transformed by the ANDI web-
site’s software using the same procedure.

2.3.7 Model evaluation

fit to data After outlier removal, transformation, and standard-
ization, the (multilevel) regression models were fitted again. This
was done to get parameter estimates on the new standardized trans-
formed scale. To evaluate whether the model fitted the raw data
well, predictions from the model had to be destandardized and trans-
formed back to the original scale. These back-transformed model pre-
dictions were plotted together with the raw data for visual inspection
of model fit.

Example: In Figure 5, the raw scores on the AVLT delayed recall
variable are plotted as a function of age, sex, and level of education.
All raw scores lie between 3 and 15, as extreme outliers have been
removed. There are many data points for education levels 2 through
7, but relatively few for education level 1 . All effects were included
in the model. This can be observed in Figure 5. The effect of age
indicates that scores decrease as participants get older. It can also be
observed that men do slightly worse than women, and that scores
increase with level of education.

In Figure 6, between and within study variance is plotted for the
variables originating from multiple studies. It can be seen that be-
tween study variance exists for most of the variables, although be-
tween study variance was generally lower than within study variance.

2.4 contents of andi

ANDI currently contains data of 26,635 healthy participants on 43
neuropsychological tests from different cognitive domains. As an ex-
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Figure 2.3: Distribution of the residuals of the model fitted to the AVLT de-
layed recall variable before power transformation.

Figure 2.4: Distribution of the residuals of the model fitted to the AVLT de-
layed recall variable after the power transformation of 0.75, and
after standardization
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Figure 2.5: Raw scores on the AVLT delayed recall variable are plotted against age. Separate plots were made
for the different levels of education. Men are depicted with the letter y and women with x.
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Figure 2.6: Partitioning of total residual variance for variables that were ad-
ministered in multiple studies. Dark gray portions of the bars
are the residual variance due to between study differences. Light
gray portions of the bars are the residual variance due to within
study/between participant differences.

ample, Table 2 lists a selection of variables currently included in the
database (the complete list is available on www.andi.nl).

2.5 discussion

We described the steps to prepare the ANDI database for normative
comparisons in neuropsychology. First, data were gathered from the
ANDI consortium. Second, data from neuropsychological tests were
merged. Third, we removed scores that could not come from cog-
nitively healthy participants using extreme borders. Fourth, to de-
termine for which demographic effects to correct, we selected only
effects for which we had enough data and only included the effect
if this was necessary according to the AIC. Fifth, after a model had
been defined, we removed scores that were outlying after correction
for demographic characteristics. We did this by removing scores that
differed more than 3.5 MAD from the median. Sixth, because norma-
tive comparison procedures assume normality of score distributions,
we used the Box-Cox procedure to search for a power transforma-
tion that, when applied to the raw data, optimally normalized the
residuals after the demographic correction. These steps were applied
for every variable of every neuropsychological test included in the
database.
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Table 2.2: Example Variables per Neuropsychological Test.

Example variable N studies N in ANDI Age range % Men Education range

Executive functions

Letter Fluency (3 letters) 23 2897 17-97 48 1-7

Semantic Fluency (animals) 27 5783 17-96 40 1-7

BADS (Zoo map total) 6 398 17-86 43 1-7

Attention and Working Memory

Trail Making Test A 37 3320 8-97 47 1-7

Trail Making Test B 37 3254 8-97 47 1-7

Stroop (Word in seconds) 30 2147 16-91 43 1-7

Stroop (CW Interference in seconds) 30 2132 16-91 43 1-7

Visuospatial

Judgment of Line Orientation (raw score) 1 69 40-80 54 3-7

Memory

RAVLT (delayed recall) 29 4598 14-97 49 1-7

RBMT (prose 1 delayed recall) 8 396 17-89 44 1-7

RCFT (delayed recall) 5 502 17-86 48 1-7

WAIS III Coding 9 1734 15-92 49 1-7

Language

Boston Naming Test (long version) 5 400 17-89 40 1-7

Intelligence

Dutch Adult Reading Test (raw score) 26 2171 16-96 42 1-7

Raven CPM (A+B) 2 4020 55-94 48 1-7
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2.5.1 Benefits of the ANDI database

The ANDI database and infrastructure offer a number of advantages
over existing normative data published in test manuals.

more appropriate norms First, the ANDI normative data have
been gathered roughly in the past 20 years which make them more
applicable than data that have been gathered longer ago. Because the
database is internet-based, and because the ANDI construction pro-
cedure is highly automatized, it will be possible to keep the norms
up-to-date by regularly adding new data and rerunning the ANDI
construction procedure. Second, the ANDI database contains a con-
siderable amount of data for old (80+) participants, making norma-
tive comparisons for this group also feasible. Third, because the data
have been donated by universities and hospitals in the Netherlands
and Flemish Belgium, all norms come from a population similar to
patients in these countries. Fourth, scores in ANDI are corrected for
the effects of age, sex, and level of education. This is an improvement
over many published normative data which are typically corrected
for age only. Fifth, in many traditional norms, age is not treated as
a continuous variable, but is divided into arbitrary age categories.
This implies that when one shifts from one age category to the next,
the interpretation of the test score may change abruptly. Because in
our regression approach age is treated as a continuous variable, such
leaps between groups do not occur (Testa et al., 2009). Sixth, for many
test variables, the ANDI norms are based on large numbers of partici-
pants (e.g., thousands) making them more precise than many existing
neuropsychological norms.

normative comparisons with multivariate data Another
unique aspect of ANDI as a normative database is that many par-
ticipants in the database have completed multiple tests. This allows
multivariate normative comparisons, which have increased sensitivity
to detect cognitive impairment (Huizenga et al., 2007). Multivariate
norms are currently often lacking so that multivariate normative com-
parisons cannot be broadly applied in clinical practice. Likewise, mul-
tiple testing corrections for univariate normative comparisons which
also require multivariate normative data (Huizenga et al., 2016), and
normative comparisons that compare differences between test scores
within one patient (Crawford & Garthwaite, 2002), become feasible.
With the ANDI database and the accompanying website, such com-
parisons can be routinely applied.

exportable infrastructure The software of the ANDI infras-
tructure will be freely available for researchers to be applied to other
data sets. If researchers collect their own control datasets, the highly



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 32PDF page: 32PDF page: 32PDF page: 32

24 andi : a normative database created from control datasets

automatized procedure for merging, standardization and correction
of the scores described here could be carried out (all code is pro-
vided on https://github.com/JAvRZ/andi-dataprocessing). In this
way, versions in other countries and other fields of study (such as
clinical psychology or medicine) can be set up.

2.5.2 Potential limitations of the ANDI database

It is important to mention potential limitations of the ANDI database.
First, ideally a normative database is based on a random sample. Al-
though some included studies indeed sampled randomly from the
population, others used convenience samples, e.g. they used family
members of patients as controls. However, note that the effects of age,
sex and level of education were included in the models, thereby re-
moving potential confounding effects of convenience sampling. Sec-
ond, the sample should ideally be from a cognitively healthy pop-
ulation. Indeed, some donated studies assured that pathology was
absent in the control sample, however others used more lenient inclu-
sion criteria. We tried to mediate this problem by excluding impossi-
ble and outlying scores.

2.5.3 Concluding remark

Although our primary goal is to make a contribution to neuropsy-
chological assessment, we also strive for broader applications. The
highly automatized ANDI construction procedure software is freely
available, allowing others to build their own diagnostic infrastructure.
Creating such database-supported infrastructures can be an impor-
tant innovation in healthcare and health research as it may provide
better norms and more advanced diagnostic procedures. In research
projects, it may replace collecting data from control subjects if the con-
trol data can be obtained from the database. This shows once more
that data sharing has great potential. Newly created databases –like
ANDI– provide valuable new resources while not putting any addi-
tional burden on healthy controls.
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3
MULT IVAR IATE NORMAT IVE COMPAR I SONS
US ING AN AGGREGATED DATABASE

3.1 abstract

In multivariate normative comparisons, a patient’s profile of test scores
is compared to those in a normative sample. Recently, it has been
shown that these multivariate normative comparisons enhance the
sensitivity of neuropsychological assessment. However, multivariate
normative comparisons require multivariate normative data, which
are often unavailable. In this paper, we show how a multivariate
normative database can be constructed by combining healthy control
group data from published neuropsychological studies. We show that
three issues should be addressed to construct a multivariate norma-
tive database. First, the database may have a multilevel structure, with
participants nested within studies. Second, not all tests are adminis-
tered in every study, so many data may be missing. Third, a patient
should be compared to controls of similar age, sex, and educational
background rather than to the entire normative sample. To address
these issues, we propose a multilevel approach for multivariate nor-
mative comparisons that accounts for missing data and includes co-
variates for age, sex, and educational background. Simulations show
that this approach controls the number of false positives and has high
sensitivity to detect genuine deviations from the norm. An empirical
example is provided. Implications for other domains than neuropsy-
chology are also discussed. To facilitate broader adoption of these
methods, we provide code implementing the entire analysis in the
open source software package R.

3.2 introduction

In neuropsychological assessments, a battery of tests is administered
to a patient to determine whether his or her cognitive functions are
impaired (Lezak et al., 2012; Strauss et al., 2006). Tests within these
batteries are designed to assess the patient’s memory, attention, lan-
guage capacities or other functions. To interpret the patient’s scores,
these scores have to be compared to the distribution of test scores in
healthy controls. Such a comparison is called a normative comparison.
A clinical neuropsychologist may use one standard deviation below

0 Published as: Agelink van Rentergem, J. A., Murre, J. M. J., & Huizenga, H. M. (2017).
Multivariate normative comparisons using an aggregated database. PLoS ONE, 12,
1-18.
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the mean as a criterion for impairment (Brooks, Iverson, & White,
2009). When a patient’s test scores are found to be below normal,
this helps the neuropsychologist characterize the patient’s cognitive
deficit, and may guide differential diagnosis and treatment.

In neuropsychological research, normative comparisons can be used
in a similar way. For example, if a patient and a control group are
studied, normative comparisons can be made for each patient in the
patient group, with the distribution of test scores in the control group
as the reference. In this manner, new variables can be constructed
that index whether patients deviate from the norm or not. Such in-
dices may for example be used to assess whether a new treatment, as
compared to a waiting list condition, reduces the number of patients
who deviate from the norm (Kraemer et al., 2003).

Normative comparisons are generally conducted for each test sep-
arately: The patient’s test score is compared to the distribution of test
scores for that specific test. This is the univariate approach to norma-
tive comparisons. An alternative approach is to compare the patient’s
profile of test scores to the multivariate distribution of test scores. This
is the multivariate approach to normative comparisons (Huba, 1985;
Crawford & Allan, 1994; Huizenga et al., 2007; Grasman, Huizenga,
& Geurts, 2010). Multivariate comparisons have been shown to be
more sensitive than univariate comparisons to detect deviations (Su
et al., 2015). For example, profiles of high scores on some tests and
low scores on other tests, or profiles with many scores that are only
a little below normal, are readily detected (Huizenga et al., 2007). An
additional advantage is that no correction for multiple comparisons
is required (Huizenga et al., 2016), because only a single multivari-
ate comparison is conducted. Multivariate normative comparisons
have been applied in the study of disorders as diverse as Parkin-
son’s disease (Smeding et al., 2010; Castelli et al., 2010, Broeders et
al., 2013), stroke (Phaf, Horsman, van der Moolen, Roos, & Schmand,
2010), prosopagnosia (Valdés-Sosa et al., 2011), bacterial meningitis
(Schmand et al., 2010) and HIV-associated neurocognitive disorder
(Cohen et al., 2014; Su et al., 2015).

Multivariate normative comparisons for two hypothetical situations
are illustrated in Figure 1.. In the left panel, the correlation between
the memory test score and language test score is 0. In the right panel,
the correlation is 0.7. Univariately, the test scores of a hypothetical
patient do not deviate, in both panels. Multivariately, the combina-
tion of the above average score on the language test, and the below
average score on the memory test does not deviate in the left panel,
but does deviate in the right panel. In other words, in the right panel,
the multivariate comparison shows that the memory score is indeed
weak, given the strength of the language score. An experienced clin-
ician may recognize this deviating profile given his/her intuition on
the correlation between test scores in the norm group. He/she may
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Figure 3.1: Illustration of multivariate normative comparisons in a situation with scores
on two neuropsychological tests. The double-headed arrows denote the 95%
univariate intervals. The ellipses denote the 95% multivariate region. The
dots denote the mean score in the norm group. The triangles depict a pa-
tient’s scores. In the left panel, tests are uncorrelated (r = 0.0). In the right
panel, tests are correlated (r = 0.7).

be able to decide without using a formal multivariate procedure that
the low score on one test together with the high score on the other
test is a cause for concern. However, in situations with more than two
tests, or situations that are less familiar to the clinician, such decisions
will become more difficult. A formal multivariate comparison should
then fare better than an informal one, and is likely to promote more
accurate diagnostic decisions.

An important drawback of this multivariate method is that multi-
variate normative data are required, because it is necessary to esti-
mate the covariance of test scores within the norm group (Grasman
et al., 2010; Huizenga et al., 2007). As test developers typically fo-
cus on one test, or at most a few tests at a time, these multivari-
ate normative data are not often available. A solution might be to
obtain normative data from a neuropsychological study in which a
clinical sample has been compared to a healthy control sample on
multiple neuropsychological tests. However, a single neuropsycholog-
ical study will not provide normative data on all neuropsychological
tests as, in any single study, only a limited number of tests are admin-
istered. Fortunately, by combining data from multiple neuropsycho-
logical studies, a dataset can be established that provides all required
information. This is the approach that was chosen in a recently started
project (www.andi.nl). In this project, a composite normative dataset
has been constructed from healthy control data provided by several
research institutes. In the following we outline the issues that arise in
the construction of such a database.
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Table 3.1: Example of a Missing Data Pattern, Where 1 = Available, and 0 =
Missing. For Each Test, and Each Study, There Are Scores Missing,
Although All Tests Co-occur at Least Once.

Test 1 Test 2 Test 3

Study 1 1 1 0

Study 2 1 0 1

Study 3 0 1 1

First, test scores may differ from study to study. Although neu-
ropsychological tests are highly standardized, subtle differences be-
tween studies may arise due to the design of the studies. Such differ-
ences might for example be caused by differences in incentives that
are given to participants, or by differences in the order of test ad-
ministration. Second, certain tests are administered in one study but
not in others (cf. Table 1). That is, for many participants, data will be
missing on those tests that were not administered in the study they
participated in. The common approach of listwise deletion discards
all participants with incomplete data (Schafer & Graham, 2002), and
would result in no participants at all.

These two issues, missing data and differences between studies, can
adequately be handled by multilevel modeling. Multilevel modeling
can account for variance between studies (Tabachnick & Fidell, 2007)
and multilevel modeling allows for missing values (Schafer & Yucel,
2002). Therefore, the present paper provides a multilevel modeling
extension of the multivariate approach to normative comparisons.

In making normative comparisons, it is important to correct for
background variables that might influence scores. For instance, age
may affect reaction times in such a way that a reaction time that im-
plies brain damage in young adults may not be particularly uncom-
mon in a very senior but healthy population. Similarly, a score that
implies mild cognitive impairment in highly educated individuals
may not be uncommon in healthy individuals with a lower education.
Sex usually is less influential, but can make a difference in certain ver-
bal tests, on which women do slightly better than men, and in some
visuospatial tests, on which women may do slightly worse (Lezak et
al., 2012). Because of the importance of these background variables,
test manuals often contain extensive norm tables to which the score
of a patient can be compared. For every background variable that is
added as a potential predictor, a new dimension is added to the table.

As an alternative to norm tables that are split for different back-
ground variables, regression-based norms are becoming increasingly
common (Crawford & Howell, 1998; Crawford et al., 2006). Instead
of defining subgroups, participants are compared to the predicted
score of a regression equation, in which test scores are regressed on
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Table 3.2: Simulated Example of a Multilevel Dataset with One Row per
Test Score. study Indicates Study Number; ID Indicates Partici-
pant Number; age, sex, and education are Background Variables;
z(1), z(2) and z(3) are Indicator Variables; test Indicates Test Num-
ber and score Indicates the Score on the Test with that Number.

study ID age sex education z(1) z(2) z(3) test score

1 1 -2.21 -1 3.68 1 0 0 1 0.08

1 1 -2.21 -1 3.68 0 1 0 2 1.59

1 2 22.79 1 -0.32 1 0 0 1 0.72

1 2 22.79 1 -0.32 0 1 0 2 2.06

2 1 -25.21 1 0.68 0 1 0 2 0.19

2 1 -25.21 1 0.68 0 0 1 3 1.26

2 2 -11.21 1 1.68 0 1 0 2 0.04

2 2 -11.21 1 1.68 0 0 1 3 -0.29

2 3 3.79 -1 0.68 0 1 0 2 -0.65

2 3 3.79 -1 0.68 0 0 1 3 -0.51

background variables such as age, sex and educational background
(Testa et al., 2009; Parmenter, Testa, Schretlen, Weinstock-Guttman, &
Benedict, 2010). In order to correct for these background variables in
a regression-based manner, we add the background variables to the
multilevel procedure as well.

In this paper, we first describe the multilevel approach to multivari-
ate normative comparisons. We then use Monte Carlo simulations to
test the efficacy of this approach in terms of false positives and in
terms of sensitivity to genuine deviations from the norm. We demon-
strate the application of the method. We conclude by discussing as-
sumptions and by suggesting some future directions.

3.3 methods

A multilevel analysis requires that the data are structured such that
every row of the dataset represents a single test score for one partici-
pant. An example with simulated data for three tests is given in Table
2.

In Table 3, the model specification is given. The model consists
of three levels: the level of test scores (abbreviated to tests, although
some tests may produce multiple scores), the level of participants and
the level of studies.

At level 1, scores are expressed as a function of so-called indicator
variables. These variables indicate to which test the dependent vari-
able refers. If the indicator variable z(1) is 1, the dependent variable
test score refers to Test 1, if z(2) is 1, the variable test score refers to
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Table 3.3: Model Specification for a Multilevel Model with Three Tests, and Three Background Vari-
ables (age, sex, and level of education), Including Specification of Between and Within Study
Covariance Structures.

Level 1 (test : i)

yijk = β1jkz(1)ijk + β2jkz(2)ijk + β3jkz(3)ijk

Level 2 (person : j)

β1jk = φ10k + φ11kagejk + φ12ksexjk + φ13keducationjk + ε1jk

β2jk = φ20k + φ21kagejk + φ22ksexjk + φ23keducationjk + ε2jk

β3jk = φ30k + φ31kagejk + φ32ksexjk + φ33keducationjk + ε3jk

Level 3 (study : k) Intercept Age Sex Education

φ10k = γ100 + ν10k φ11k = γ110 φ12k = γ120 φ13k = γ130

φ20k = γ200 + ν20k φ21k = γ210 φ22k = γ220 φ23k = γ230

φ30k = γ300 + ν30k φ31k = γ310 φ32k = γ320 φ33k = γ330

Combined (substitution of level 3 into 2, and level 2 into 1)

yijk = (γ100 + γ110agejk + γ120sexjk + γ130educationjk + ν10k + ε1jk)z(1)ijk+

(γ200 + γ210agejk + γ220sexjk + γ230educationjk + ν20k + ε2jk)z(2)ijk+

(γ300 + γ310agejk + γ320sexjk + γ330educationjk + ν30k + ε3jk)z(3)ijk

Covariance Matrix Within Covariance Matrix Between

Test A Test B Test C Test A Test B Test C

Test A varε1jk Test A varν10k

Test B covε2jk ,ε1jk vare2jk Test B 0 varν20k

Test C covε3jk ,ε1jk covε3jk ,ε2jk varε3jk Test C 0 0 varν30k
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test 2, etc. A similar method using indicator variables for multivari-
ate data analysis has been described before (Goldstein, 1995; Bauer,
Preacher, & Gil, 2006).

At level 2, the effects of a participant’s background variables, that
is, age, sex, and educational background, are introduced. The level 2
model also includes the error terms εijk, which denote deviations of
an individual’s observed test scores to that predicted by the model
for that particular study.

At level 3, differences between studies are introduced by adding
error terms v to the intercept of each test. Note that the effects of
age, sex, and educational background are constrained to be the same
in different studies, as it is unlikely that these effects differ between
studies. This constraint can however easily be relaxed by adding error
terms to those effects as well.

Substituting level 3 into level 2, and level 2 into level 1 yields the
combined model (cf. Table 3). In this model, γ100 denotes the intercept
of the first test. The interpretation of intercepts is dependent on the
scaling of background variables. If age and education are centered
on their mean and sex is contrast coded, the intercept γ100 refers to
the scores on the first test for an "average" participant: of average
age, not of a specific sex, with an average educational background.
The parameters γ110, γ120 and γ130 denote the effects of age, sex, and
educational background on the first test. In addition to these so-called
fixed effects, the model also yields estimators of random effects: the
covariance matrix of within study errors ε and the covariance matrix
of between study errors v.

No constraints were imposed on the covariance structure of within
study errors ε (cf. Table 3). Modeling each of the covariances between
variables separately can account for both dependencies between vari-
ables within tests, and between variables that belong to different tests.
Also, measurements can freely covary both positively and negatively.
The covariance matrix of within study errors was constrained to be
equal over studies, as is common in multilevel modeling (Tabachnick
& Fidell, 2007).

As it is unlikely that test scores of "average" participants covary
at the between study level, we imposed the constraint that between
study errors v did not covary (cf. Table 3). This constraint could be
relaxed by adding these covariances to the model as well.

As mentioned in the introduction, one of the advantages of mul-
tilevel modeling is the handling of missing values. More specifically,
multilevel models do not require that every participant has completed
an equal number of tests. Multilevel models can be estimated with
Full Information Maximum Likelihood (FIML) which uses all avail-
able information from each case (Dempster, Laird, & Rubin, 1977;
Enders & Bandalos, 2001). For FIML to result in correct parameter
estimates, the missing data mechanism should be ignorable, i.e., the
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fact that an observation is missing should not be due to the value of
that particular observation (Schafer & Graham, 2002). In the present
case, missing data is due to the study design (Graham, Taylor, Ol-
chowski, & Cumsille, 2006), and not due to the values of test scores
that participants achieve. Since the participants that are pooled are all
healthy, and the tests can be completed easily by healthy participants,
missing data within studies should not occur systematically. There-
fore, the missing data mechanism can be classified as ignorable, and
FIML will yield adequate estimates.

In sum, multilevel modeling can be used to combine the results
of multiple studies, even if data are missing, and it can incorporate
background variables. Next, we indicate how multilevel models can
be combined with multivariate normative comparisons to analyze
whether an individual deviates from a composite normative database.

The multivariate normative comparison uses a version of Hotelling’s
T2 statistic that is adapted for normative comparisons. If there are no
background variables, the equation for this T2

norm is (Huizenga et al.,
2007; Grasman et al., 2010):

T2
norm =

1
(n + 1)/n

n− p
(n− 1)p

(ȳ− x)′C−1(ȳ− x) (3.1)

where n is the number of participants in the norm group, p is the
number of tests, ȳ is a vector of length p containing the mean scores
for every test in the norm group, x is a vector of length p containing
the patient scores for every test, prime ′ denotes transposition, C is
the p by p covariance matrix of the test scores in the norm group, and
C−1 is the inverse of this covariance matrix.

Looking up T2
norm in the F-distribution with p numerator degrees

of freedom, and n − p denominator degrees of freedom, yields a p-
value corresponding to the probability that the patient would obtain
this profile of scores (or a more extreme one) if he belongs to the same
population as the norm group (Grasman et al., 2010; Huizenga et al.,
2007). If this probability is very small, for example smaller than 0.05,
the patient’s profile of scores is said to be deviating.

This normative comparison is two-sided, as both overall positive
and overall negative deviations are considered abnormal. A one-sided
variant has also been developed (Follmann, 1996; Huizenga et al.,
2007). In one-sided testing, all tests have to be standardized to bring
them on the same scale. It is then decided that an individual is de-
viating from the norm if two conditions are satisfied: (1) the sum of
deviations over tests is in the expected direction, and (2) the p-value
does not exceed 0.10.

To account for the multilevel structure in the normative database,
we make three adjustments to the multivariate normative compar-
isons method. First, the covariance matrix C is now the sum of two
covariance matrices: the within study covariance matrix and the be-
tween study covariance matrix. Second, y now denotes the norma-
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tive scores predicted given an age, sex, and level of education that
matches that of the patient. Third, the degrees of freedom have to be
adjusted, as, in case of missing data, participants do not contribute
information to the estimation of all parameters, and as individuals
are nested within studies and thus observations are not completely
independent (Tabachnick & Fidell, 2007).

There is no consensus on how degrees of freedom should be com-
puted and different software packages use different methods (Bolker
et al., 2009). We use the method implemented in the multilevel mod-
eling software package nlme (Pinheiro & Bates, 2000), which for our
case equals the number of observations - (number of studies + num-
ber of estimated effects + 1).

Similar to the issue of determination of degrees of freedom, deter-
mination of the n to be used in equation (1) is not straightforward
when dealing with nested and missing data. Fortunately, once n be-
comes moderately large (above 100), even large differences in choice
of n are of little influence. We set n equal to the total number of par-
ticipants.

3.4 simulations

In simulation study 1, we investigated the effect of ignoring between
study variance on the false positive rate. We did this by fitting models
both with and without between study variance. In simulation study
2, we investigated the effect of missing data on false positive rate and
sensitivity. In simulation 2, scores on certain tests were deleted for all
participants in a study, as if the researchers in that study had decided
not to administer that test.

3.4.1 Methods

The settings for the simulation studies are given in Table 4. In sim-
ulation study 2, either 0%, 40% or 70% of the data was made miss-
ing. Missing data was introduced by deleting data according to the
pattern in Figure 2. The 0% condition is intended not as a control
condition, but as a check of multilevel normative comparisons, with-
out the added complication of missing data. Because of the nature of
the aggregate database, 0% missing data will never be encountered
in real settings. If only regularly administered tests were included
in the database, only 40% to 70% missing data should be achievable.
However, if all possible neuropsychological tests were included, the
percentage missing test scores should be much higher; this would
not allow the current model specification and normative comparison
methods. This limitation is discussed further in the discussion sec-
tion. Ten tests were used in the simulation: Twelve tests is the average
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Table 3.4: Settings Used in the Two Simulation Studies.

Settings

Number of tests 10

Number of participants per study 50

Number of studies 30

Percentage of test scores missing Simulation 1: 0 %

Simulation 2: 0 %, 40% or 70%

Number of simulations 1000 per condition

Table 3.5: Parameter Values in the Two Simulation Studies.

Parameters

Intercepts 20

Age effect -0.125

Sex effect 0.5

Education effect 1.25

Residual variance of test scores within studies 25

Residual correlation between test scores within studies 0.4

Residual variance of test scores between studies 5

Residual correlation between test scores between studies 0.0

number of tests that a neuropsychologist uses (Rabin, Paolillo, & Barr,
2016).

The parameter values for the two simulation studies are given in
Table 5. The ANDI database was used to set the sample sizes of stud-
ies and the number of studies. The ANDI database was also used to
estimate the effect sex, age and level of education would have on test
scores. The simulation settings (see doi.org/10.5281/zenodo.321858)
were based on these estimates. Information on the ANDI database
(which groups contributed, how many studies and participants are
available per test variable etc.) is presented in the documentation on
www.andi.nl. Another large Dutch sample was examined to verify
that effects as observed in the ANDI database can be considered rep-
resentative (Murre, Janssen, Rouw, & Meeter, 2013). The effects of
background variables were all assumed to be linear. A parameter of
-0.125 for age indicates for example that for every year that a partici-
pant increases in age, the participant on average achieves a score that
is 0.125 points lower. The variance between studies was assumed to be
small compared to the variance between participants within studies.

In both simulation studies, patient data were simulated with the
same parameters that were used to simulate normative data, on the
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Figure 3.2: Missing data patterns for the 0%, 40% and 70% missing data con-
ditions, with studies on the y-axis and tests on the x-axis. Col-
ored boxes are non-missing test scores, white boxes are missing test
scores.

understanding that patients’ scores differed from the scores in the
norm group on 0, 1, 2, 5 or 9 tests. These deviations were introduced
by subtracting two standard deviations (computed from the total vari-
ance) of the test scores in the norm group from the patient’s simulated
test scores. So if patients truly deviated, they did so in a negative way.
Two standard deviations could be considered the difference between
patients and the norm group that is maximally interesting from a sta-
tistical perspective: Patients with much more extreme scores are easily
recognized as being deviating, and patients with much less extreme
scores are probably non-deviating. A 2 standard deviation difference
is however a large difference in neuropsychological terms. Research
has shown that 1 and 1.5 standard deviations are common for im-
pairments that are secondary to a particular disorder, for example
for attention problems that accompany major depression (Zakzanis,
Leach, Kaplan, 1998).

In applying the multivariate comparison, false positive rate was
defined as the fraction of simulations in which a significant multi-
variate difference was observed in conditions in which there were no
simulated differences. Sensitivity was defined as the fraction of simu-
lations in which a multivariate difference was observed, in conditions
in which simulated differences were present.

The multivariate results were contrasted with results of univariate
comparisons. For the univariate comparisons, we recorded whether
any of the patients’ scores, using an alpha of 0.05, deviated signif-
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icantly from the norm univariately. This implies that in the power
condition, we did not require that the deviation corresponded to any
of the simulated deviations. This definition keeps results comparable
between univariate and multivariate results, but works in favor of uni-
variate comparisons: They do not need to be correct to be sensitive.

In the case of no simulated deviations, the rate of finding at least
one deviation is known as the familywise error rate. It has been
shown that the familywise error rate becomes much too high if mul-
tiple comparisons are made (Huizenga et al., 2007). Therefore, cor-
rections can be applied, such as the Bonferroni correction, which di-
vides the criterion for significance by the number of comparisons.
Therefore, we compared the results that were obtained using the mul-
tivariate comparisons to univariate comparisons that were either un-
corrected or Bonferroni corrected.

All comparisons were one-sided, as clinicians are generally only
interested in patients’ performance being worse than in the norm
group. This means that we used a p-value of 0.10 for the multivariate
comparison as our criterion value, with the added criterion that the
summed difference is in the expected direction, as described in the
method section. Given these two criteria, we expect the overall pro-
portion of significant deviations to equal 0.05 if no differences were
simulated. For the univariate comparison, we used 0.05 as our one-
sided criterion.

A critical p-value of 0.05 or equivalently a 95% confidence interval
is often used in scientific research, but not in clinical practice. In clin-
ical practice, more lenient criteria, such as 1 SD or 1.5 SD below the
mean are common. In fact, research has shown that sensitivity and
specificity may be optimal with such a 1.5 SD criterion (Dalrymple-
Alford et al., 2011). However, in applications of the multivariate nor-
mative comparison, the 95% confidence interval has been shown to be
sensitive to deviations, even in comparison to univariate results with
more lenient criteria (Su et al., 2015). Therefore, the 0.05 criterion was
used in these simulations as well.

We fitted the multilevel models using the software package nlme
(Pinheiro & Bates, 2000), because it is flexible in specifying covari-
ance structures both for the ε and v terms. R code that can be used
to perform the entire analysis including the multivariate normative
comparison can be found in the supporting information in the online
version.

3.5 results

3.5.1 Simulation study 1

If between study variance was neglected, the false positive rate was
0.066 for the multivariate comparison, which is only slightly elevated
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compared to the required 0.05. If between study variance was esti-
mated, the false positive rate was adequate, 0.050. For Bonferroni
corrected univariate comparisons, the familywise false positive rate
was 0.049 without estimated between study variance, and 0.047 with
estimated between study variance. For uncorrected tests, the family-
wise error rate was too high; 0.306 without estimated between study
variance, 0.276 with estimated between study variance.

3.5.2 Simulation study 2

If 0% of the data were missing, the false positive rate was 0.060 for
the multivariate comparison. If 40% of the data were missing, it was
0.059, whereas it was 0.097 if 70% of the data were missing. For the un-
corrected univariate comparisons, the familywise error rate was too
high, around 0.3, for all three percentages missing. For the Bonferroni
corrected univariate comparison, the familywise error rate was 0.046,
0.046, and 0.040 for 0%, 40% and 70% missing. The multivariate re-
sults show that false positive rate is not completely under control if
the percentage missing test scores becomes very high.

With respect to power, as can be seen in Figure 3, uncorrected uni-
variate comparisons show more significant results than multivariate
or Bonferroni corrected univariate normative comparisons. Because
familywise error was too high for uncorrected comparisons, the ad-
vantage in terms of power cannot be interpreted. Multivariate norma-
tive comparisons and Bonferroni corrected univariate comparisons
show similar results in all conditions, with the exception of the 5 sim-
ulated deviations condition. When the patient deviates on 5 tests, the
multivariate comparison is more sensitive.

Figure 3 also shows that sensitivity was about equal with 0% and
40%missing data. The comparisons with 70%missing data had slightly
higher sensitivity. This should not be taken to suggest that 70% miss-
ing data is preferable, as the false positive rate was also slightly
higher.

3.5.2.1 Follow-up simulation studies

As a follow-up, we investigated the effect of the magnitude of be-
tween study variance on the false positive rate. To this end we com-
puted the intraclass correlation (ICC), which is defined as the ratio of
the between study variance and the sum of the within and between
study variance. In simulation studies 1 and 2 this ICC was 0.167. A
preliminary analysis of the ANDI database shows ICCs ranging from
0 to 0.4, depending on the type of tests under study. These ICC’s thus
suggest that between study variance might vary considerably in real
applications.

To investigate whether a larger between study variance affects false
positive rate, we repeated simulation study 2 with a between study
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Figure 3.3: False positives (where number of deviations = 0) and sensitivity
(where number of deviations > 0) as a function of the number of
simulated deviations, for 0%, 40%, and 70% missing data in the
norm group. Error bars represent 95% confidence intervals.

variance of 17, yielding an ICC of 0.4 ( 17 / ( 17 + 25) ). With this
higher level of between study variance, the false positive rates for
multivariate normative comparisons were 0.060, 0.069 and 0.114 in
the 0%, 40%, and 70% missing data conditions. For Bonferroni cor-
rected univariate normative comparisons, the false positive rates for
these conditions were 0.060, 0.066 and 0.074. For uncorrected univari-
ate comparisons, the false positive rates were too high, around 0.35.
These results indicate that false positive rate only slightly increases if
between study variance increases.

In realistic settings, not every study will have the same number
of participants, i.e. sample sizes will be unbalanced. To investigate
its effects, we ran simulations with a mean of N=50, and a standard
deviation of 10, with 70% missing data. These simulations showed a
false positive rate of 0.112 for the multivariate comparisons, which is
about the same as for the equal sample size case. Univariate uncor-
rected results showed a false positive rate of 0.302, while Bonferroni
corrected results showed a false positive rate of 0.06. Therefore, un-
equal sample sizes do not seem to be problematic for multivariate
or univariate comparisons. We also looked at simulations with un-
equal sample sizes and fewer participants, i.e a mean of N=25, and a
standard deviation of 5. For these simulations, the multivariate com-
parisons showed a false positive rate of 0.192, while the univariate
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uncorrected result was 0.327 and the Bonferroni corrected result was
0.054. The false positive rate is increased for the multivariate result.
This seems to be because the problems of 70% missing data are com-
bined with a mean decrease of 50% of the number of participants in
this condition.

All simulations so far have been done with ten tests. We also checked
whether the same results were obtained for 20 and 5 tests. Fitting
models to data from 20 tests took considerably more resources than
fitting models with 10 tests. Therefore, we only ran the 70% missing
condition, and performed 100 rather than 1000 simulations. With 5
tests, we ran 1000 simulations with a 60% missing condition, as 70%
of 5 does not give a whole number of test scores to remove.

A total of 11 simulations with 20 tests showed convergence issues
and had to be rerun, demonstrating that with more parameters, re-
sults can become more unstable with this amount of missing data.
Multivariate results showed a false positive rate of 0.17. Uncorrected
univariate results showed a false positive rate of 0.36. Bonferroni cor-
rected results showed a false positive rate of 0.02. The elevated type
1 error rate for multivariate comparisons seems to originate in less
precise estimates of covariances between tests: Because the number
of participants and studies were kept equal, increasing the number of
tests implies that the number of studies in which two tests are admin-
istered together decreases. So some covariance estimates are based on
a single study with 30 participants. Because the Bonferroni corrected
tests do not use covariance, they remain conservative.

With 5 tests and 60% missing, the false positive rate was 0.07 for
the multivariate comparisons. Uncorrected univariate results showed
a false positive rate of 0.214. Bonferroni corrected results showed a
false positive rate of 0.055. This shows that with fewer tests, the mul-
tivariate method performs appropriately.

Lastly, we investigated the effect of including fewer studies, as
fewer than 30 studies might be available for some neuropsycholog-
ical tests. We simulated data with 20 studies for 10 tests with 40%
missing data, because with 70% missing not all covariances could
be estimated. The false positive rate was 0.07 for the multivariate
method, 0.326 for the univariate uncorrected method and 0.055 for
the Bonferroni corrected method. So although the number of stud-
ies, and therefore also participants, was cut by a third, false positives
rates were not affected.

3.5.3 Empirical example

To give an impression of what the analysis would look like in practice,
the method was applied to the ANDI database described earlier, and
was used to examine the profile of a patient with Parkinson’s disease.
The details of the Parkinson’s disease dataset have been described
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elsewhere (Muslimovic, Post, Speelman, & Schmand, 2005; Broeders
et al., 2013).

Because the ANDI database contains many tests, we only selected
tests that the patient had completed, and fitted the model to only
those tests. For this example, the model was fitted to two variables
of the Auditory Verbal Learning Test (AVLT), three variables of the
Stroop test, two variables of the Trail Making Test (TMT), one vari-
able of the Letter Fluency Test, one variable of the Semantic Flu-
ency Test, summing up to a total of nine variables. For each of these
variables, more than 1700 participants were available in the ANDI
database (www.andi.nl/home). All variables were demographically
corrected for age, sex and level of education, except for TMT part A,
for which correction for sex was not necessary. All test variables were
transformed to normality using Box-Cox transformations, and were
recoded and standardized ( de Vent et al., 2016).

In Figure 4, four bivariate plots are given for the patient with
Parkinson’s disease. A selection of two-dimensional plots is given be-
cause although the multivariate comparison provides a single result
for eleven dimensions, this eleven-dimensional result is not easily vi-
sualized. As can be seen, correlations between variables differ, i.e. the
shape of the bivariate distribution differs. The Stroop Color and Word
variables in the top left plot are correlated, presumably because they
belong to the same test and tap into the same naming speed compo-
nent. The Stroop Color and TMT part b variables in the top right plot
are only slightly correlated, presumably because although they both
involve speed, one involves paper-and-pencil tracing, while the other
involves verbal naming. Recalling words from memory after 30 min-
utes in the AVLT, and tracing a path in the TMT in the bottom left
plot are completely uncorrelated, which is why the ellipse is circular.
In all these bivariate plots, the patient falls within the 95% confidence
interval. For the bottom right plot, this is not the case, as the patient
falls far below the ellipse. This is mainly due to a very slow perfor-
mance on the color-word interference condition of the Stroop. This
slow performance is incongruent with the normal performance on
the other Stroop subtask.

The multivariate test result is T2
norm(9, 30902) = 4.32, p < 0.001. Us-

ing the one-sided criterion, we first have to ascertain whether the
sum of differences is negative, which it is, -0.76. Therefore, we can
conclude that this patient is impaired, as p < 0.10.

3.6 discussion

Multivariate normative comparisons are a valuable tool in neuropsy-
chological assessment. Therefore, it is important that a multivariate
normative database becomes available. We proposed the construction
of such a multivariate database by joining healthy control group data
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Figure 3.4: Four selected bivariate plots. The ellipses denote the 95% mul-
tivariate region. The dots denote the mean score in the norm
group. The triangles depict the patient’s scores.

from published neuropsychological studies. In this paper we also out-
lined a solution to three issues that arise when constructing such
a combined database. First, test scores may differ between studies.
Second, not all tests are administered in all studies. Third, patients
should be compared to controls of a similar age, sex, and level of
education. We developed a method that uses multilevel modeling to
solve these three issues.

Our first set of simulations shows that estimating the variance be-
tween studies keeps false positive rate at an acceptable level. The
results of our second set of simulations show that the number of false
positives is too high if the percentage of missing data is 70%, but
is satisfactory if 40% of the data is missing. Sensitivity of normative
comparisons remains intact, even if 70% of the data is missing.

The power advantage, or enhanced sensitivity, of the multivariate
comparison over Bonferroni corrected univariate comparisons was
not visible in all conditions. Only when the patient deviated on half
the tests, did the multivariate comparisons outperform Bonferroni
corrected univariate comparisons. This is in line with earlier results
(Huizenga et al., 2007), where it was shown that the advantage of
the multivariate comparisons over univariate comparisons is greatest
with intermediate numbers of deviations, with smaller advantages
when the number of deviations is either very high or very low.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 50PDF page: 50PDF page: 50PDF page: 50

42 multivariate normative comparisons using an aggregated database

In the simulations with 20 tests and the simulations with smaller
N, the false positive rate was not under control for the multivariate
comparisons. This may be the result of the very large number of pa-
rameters needed in comparison to the number of participants, which
primarily affected the estimates of the covariance between tests. A
potential solution for such cases, if extra data collection is impossi-
ble, could be to provide restrictions on the covariances using a factor
model, or to include prior information on the covariances.

Note that the proposed multilevel approach estimates between study
variance. An alternative way to aggregate data over studies is to as-
sume that between study variance does not need to be estimated. This
assumption might in some applications be required if not sufficient
studies are available to estimate this between study variance compo-
nent (Hussong, Curran, & Bauer, 2013). Fortunately, in neuropsychol-
ogy, sufficient studies are available as many studies administer the
same instruments. Another alternative is to estimate between study
variance, but to refrain from using it in comparisons. This may be
more in line with current practice, where norms are used from a sin-
gle normative study. However, we see the possibility to include be-
tween study variance as an advantage, as it allows for generalization,
whereas assuming that between study variance is zero does not allow
for generalization to new studies and new cases (Curran & Hussong,
2009).

The current approach requires several assumptions. First, the mul-
tilevel procedure assumes that all contributing studies have drawn
random samples of healthy participants. At first sight, this assump-
tion may not be met in neuropsychological studies. For example,
some researchers will only draw random samples from one sex, e.g.
women, because they are studying the effects of a particular dis-
ease that occurs predominantly in women, e.g. breast cancer. This
matching will however be harmless to our assumption of random
sampling, as the assumption pertains to the data after correction for
age, sex, and educational background. As another example, close ac-
quaintances of patients are popular controls: They are typically from
similar educational backgrounds as the patient population and are
often willing to participate (Gomez-Anson et al., 2007). Again, the
fact that background is similar does not seem to be problematic, as
educational background is included in the model. Finally, some con-
trol samples cannot be presupposed to be from the healthy popula-
tion, such as non-schizophrenic psychiatric patients or even abstinent
non-Korsakoff alcoholics (Moritz & Woodward, 2005; Oscar-Berman,
Kirkley, Gansler, & Couture, 2004). These should not be included in
the composite normative database.

Second, multilevel analysis assumes that the included studies are
randomly sampled from a population of studies. In practice, all avail-
able studies that fit the inclusion criteria would be included, rather
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than taking a sample. Therefore, we argue that this assumption is
likely to be met. Note that this is similar to a random-effects meta-
analysis, where all studies, and not a random sample, on the effect
under investigation are included.

Third, the current methodology may allow for missing data at the
level of individual participants. This requires that the missing data
mechanism can be considered ignorable. Fortunately, we do not ex-
pect many non-ignorable missing values in neuropsychological stud-
ies. Patients may find it difficult to complete test batteries, e.g. be-
cause of fatigue. Therefore, test batteries are designed to be not too
demanding (Lezak et al., 2012). This implies that healthy participants
often can complete the entire battery, and therefore few scores are
generally missing. Because the number of non-ignorable missing data
points, if present, should thus be small, the amount of bias in the es-
timates they incur will most likely be negligible.

Fourth, the normative comparison method assumes that scores are
multivariate normally distributed around predicted scores. Little is
known about the multivariate distribution of tests because large mul-
tivariate datasets have generally not been available. We do however
know that violations of univariate normality, which preclude multi-
variate normality, are common in neuropsychology. Neuropsycholog-
ical test scores may for example be skewed and truncated by ceil-
ing or floor effects (Proust-Lima, Dartigues, & Jacqmin-Gadda, 2011).
Statistical tests have been shown to be generally robust to mild vio-
lations of distributional assumptions in a group comparison setting
(Jacqmin-Gadda et al., 2007) as well as in a normative comparison
setting (Crawford et al., 2006) but more serious violations may result
in a larger false positive rate. The multivariate comparison method
has been shown to be robust to varying levels of skewness of the mul-
tivariate distribution but not to varying levels of kurtosis (Grasman
et al., 2010). Solutions that have been proposed when multivariate
normality is not tenable, involve transformations of the data (Looney,
1995) or non-parametric comparisons (Grasman et al., 2010).

Fifth, the current method requires calculation of the covariance be-
tween every pair of tests. Therefore, every test has to be administered
with each of the other tests to at least a few participants. This lim-
its the number of tests that can be included, as only the more com-
mon tests will have been administered together with all other tests.
This was the case for the empirical example: A selection of tests had
to be made to ensure that all covariances could be estimated with
the present method. If less common tests need to be included, so-
lutions may lie in models that restrict covariances, for example to
obey a certain factor structure, or in collecting additional data (Car-
rig, Manrique-Vallier, Ranby, Reiter, & Hoyle, 2015).

The current approach can be extended in a variety of ways. First,
although the proposed model flexibly handles missing data in test
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scores, it still resorts to listwise deletion of cases having a missing
value on one of the covariates. Because missing covariates are han-
dled differently from missing scores, this may result in many cases
being dropped that were previously included. In these situations, al-
ternatives to FIML such as multiple imputation might be a good so-
lution.

This method can be extended beyond clinical neuropsychology, but
note that clinical neuropsychology has three advantages that may not
be present in every other field. The first is that neuropsychological
test administration has been standardized to a high degree, such that
data from different studies can be pooled. If there are for example
differences between how tests are scored, additional steps may be
necessary to harmonize measurements across studies (Hussong et
al., 2013). The second advantage is that clinical neuropsychology is
a large field, so many studies are available that have tested control
groups. In smaller fields, it may be difficult to find sufficient studies
that have administered the same test to accurately estimate between
study variance. The third is that neuropsychologists administer multi-
ple tests to the same participants, and therefore covariances between
tests can be estimated. In fields where smaller test batteries are com-
mon, the lack of overlapping tests may imply that multivariate nor-
mative comparisons according to the current methodology are not
feasible.

These advantages are however present in other fields, for example,
in personnel psychology where highly standardized tests are regu-
larly administered in large batteries. But also outside of psychology,
the methods described here can be used just as easily for example
in medicine, where physiological measures like blood pressure and
heart rate are compared against the norm. Profiles of such measures
could be compared against the norm as well using the multivariate
method described here.

In conclusion, a large composite multivariate normative dataset can
be established by combining data from many different studies. The
current multilevel extension of multivariate normative comparisons
can be used to handle (i) variability in test scores between studies
(ii) missing data which arise because not all studies administered
the same tests, and (iii) background variables. This multilevel exten-
sion allows routine multivariate comparisons of patients’ test scores
to multivariate normative data. This will enhance sensitivity of nor-
mative comparisons in neuropsychology, and may also be valuable in
other contexts, e.g. in clinical or personnel psychology or medicine.
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4
MULT IVAR IATE NORMAT IVE COMPAR I SONS FOR
NEUROPSYCHOLOGICAL ASSESSMENT BY A
MULT ILEVEL FACTOR STRUCTURE OR MULT IPLE
IMPUTAT ION APPROACH

4.1 abstract

Neuropsychologists administer neuropsychological tests to decide whether
a patient is cognitively impaired. This clinical decision is made by
comparing a patient’s scores to those of healthy participants in a nor-
mative sample. In a multivariate normative comparison, a patient’s
entire profile of scores is compared to scores in a normative sam-
ple. Such a multivariate comparison has been shown to improve clin-
ical decision making. However, it requires a multivariate normative
dataset, which often is unavailable.

To obtain such a multivariate normative dataset, we propose to ag-
gregate healthy control group data from existing neuropsychological
studies. As not all studies administered the same tests, this aggre-
gated database will contain substantial amounts of missing data. We
therefore propose two solutions: multiple imputation and factor mod-
eling.

Our simulation studies show that factor modeling is preferred over
multiple imputation, provided that the factor model is adequately
specified. This factor modeling approach will therefore allow routine
use of multivariate normative comparisons, enabling more accurate
clinical decision making.

4.2 introduction

Normative comparisons are used to compare a patient’s test scores to
scores in a normative sample. In neuropsychological clinical practice,
tests are designed to detect impairments in attention, working mem-
ory, inhibition or other cognitive functions. When normative compar-
isons show that a patient’s scores are low compared to scores in a nor-
mative sample, this result may guide the treatment plan and can con-
tribute to the characterization of the patient’s condition which may
be caused by a disease, like Alzheimer’s disease or Parkinson’s dis-
ease, or by brain damage due to traumatic injury or stroke (Lezak

0 Published as: Agelink van Rentergem, J. A., de Vent, N. R., Schmand, B. A.,
Murre, J. M. J., & Huizenga, H. M. (2017). Multivariate normative compar-
isons for neuropsychological assessment by a multilevel factor structure or mul-
tiple imputation approach, Psychological Assessment. Advance online publication.
doi:10.1037/pas0000489
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et al., 2012; Strauss et al., 2006; Tierney et al., 1996). Normative com-
parisons are also used in neuropsychological research. They may be
used to quantify the number of impaired scores in a treatment group
as compared to a placebo group (Kraemer et al., 2003; e.g. Evans, El-
liott, Reynders, & Isaac, 2014), or to assign participants to impaired or
unimpaired groups. This grouping can then serve as an independent
variable in studies investigating biomarkers or treatments (Meyer,
Boscardin, Kwasa, & Price, 2013). As normative comparisons are ubiq-
uitous in neuropsychological practice and research, it is important to
optimize their performance.

Clinicians currently compare patient data to normative data col-
lected by test publishers, who generally collect normative data for
one test at a time. Normative data for a single test allow only univari-
ate comparisons, in which a patient’s score is compared to scores in
a normative sample for each test separately (Crawford & Garthwaite,
2002; for applications, see for example Bird, Castelli, Malik, Frith, &
Husain, 2004, or Cappelletti, Butterworth, & Kopelman, 2012).

In multivariate normative comparisons, all of a patient’s test scores
are simultaneously compared to those in the normative sample, to
determine whether the profile of test scores is abnormal (Huizenga et
al., 2007; Grasman et al., 2010; Huba, 1985; Crawford & Allan, 1994).
One advantage is that they can identify deviating profiles that cannot
be identified by multiple univariate comparisons. Deviating profiles
may for example feature unexpected combinations of high scores on
some tests, and low scores on others. Second, multivariate normative
comparisons do not require corrections for multiple comparisons, as
only a single comparison is made across tests (Huizenga et al., 2007).
Therefore, one can perform this comparison without having to correct
for an increased false positive rate due to multiple testing (Huizenga
et al., 2016), and without having to estimate the number of univariate
deviations one would expect in the healthy population (Brooks et al.,
2009). Third, Su et al. (2015) showed that for research in HIV-related
cognitive impairment, multivariate normative comparisons result in
higher specificity than the univariate criteria that are commonly used.
Multivariate normative comparisons have for example been used to
study the psychological effects of Parkinson’s disease, stroke and bac-
terial meningitis (Broeders et al., 2013; Castelli et al., 2010; Phaf et al.,
2010; Schmand et al., 2010). Multivariate normative comparisons do
not seem to have been broadly adopted in clinical practice. This may
be caused by the unavailability of the required multivariate norm
data.

Multivariate normative comparisons have many advantages, but
require that multivariate normative data are available, i.e. that nor-
mative participants completed the same battery of tests that has been
completed by the patient. However, clinicians and researchers draw
from a variety of test batteries. For these ad hoc combinations of tests,
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multivariate normative data are generally unavailable. This limits the
broader application of multivariate normative comparisons. In the-
ory, this issue could be solved by administering all neuropsycholog-
ical tests to one normative sample. However, because the total num-
ber of neuropsychological tests has become very large, administering
all tests would be prohibitively expensive and taxing on participants
constituting the healthy normative sample. Therefore, we develop a
practical alternative in this article.

In a typical clinical neuropsychological study, multiple tests are
administered to two groups: a clinical group of interest, and a con-
trol group that is healthy but is otherwise comparable to the clinical
group. The control group data can be considered a small, but useful,
multivariate normative dataset for a particular set of tests. If a neu-
ropsychologist administers the same set of tests to a patient whose
background characteristics are comparable to the control group, this
clinician could use the control group data from this study to make a
multivariate normative comparison.

However, a dataset from a single study is not useful to every clini-
cian: Some tests that the clinician administers will not have been ad-
ministered in the study, and the clinician’s patient may not be compa-
rable to the study participants. The clinician’s patient may be younger
than the participants in the study, or better educated. However, if the
clinician would have access to a database consisting of multiple stud-
ies, chances increase that data are available for the clinician’s tests.
Also, if the database has many participants of different sexes, ages
and levels of education, the clinician will be able to correct scores for
the influence of these background variables. Therefore, it is useful to
combine data from multiple studies to achieve a larger palette of tests,
and to achieve better coverage of different sexes, ages and levels of
education.

One data combination initiative in the field of neuropsychology is
the Advanced Neuropsychological Diagnostics Infrastructure (ANDI;
de Vent et al., 2016). As part of the ANDI project, neuropsychological
test data of healthy participants have been aggregated into a single
database. The database currently contains over twenty thousand par-
ticipants from almost a hundred studies, with data for over thirty
tests. For the most common neuropsychological tests that are fre-
quently administered together, multivariate normative comparisons
can be carried out using a multilevel approach (Agelink van Rentergem,
Murre, & Huizenga, 2017). However, we will show that this is not the
case for less common tests that are not often administered together,
and we will propose and test two possible solutions.

The structure of this article is as follows. First, we describe issues
that arise when combining control datasets from multiple studies in
establishing a normative database. These are variability in scores be-
tween studies, scores that are missing because tests have not been ad-
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ministered in every study, and combinations of tests that have never
been administered together in any of the studies. Second, we intro-
duce two approaches which potentially solve all these issues, namely
a multiple imputation and a factor structure approach. Third, we run
simulation studies to test which of these approaches is most useful
for normative comparisons. Fourth, we demonstrate the application
of the factor structure approach to empirical data. Finally, we discuss
potential limitations and improvements. We will continue with the
use of clinical neuropsychology as a motivating example, although
the methods described can be applied in any field where scores on
highly standardized measures are compared to normative data, for
example in personnel or clinical psychology

4.2.1 Between study variance

Scores on tests may differ from one healthy sample to the next be-
cause researchers’ study design choices may affect scores. First, par-
ticipants’ motivation to achieve the best score may differ between
studies. For example, in one study, an animal-naming test may be the
very first test that participants have to complete, and they may be
highly motivated to name as many animals as they can. In another
study, they may have already completed an hour of other tests, and
may be unmotivated on this animal-naming test and perform worse,
even if test administration and the sampled population are identical
(see Huizenga, van der Molen, Bexkens, Bos, & van den Wildenberg,
2012). Second, even though neuropsychological tests are standardized
to a high degree, the way tests are administered can still differ be-
tween studies. For example, an experimenter may be required to call
to attention any errors that the participant makes, but the kind of
assistance offered and the speed at which mistakes are noticed and
corrected can easily differ between experimenters (Snow, 1987, Lezak
et al., 2012). Such kinds of between study differences can make par-
ticipants’ scores within studies more alike, and less like participants’
scores from other studies. Therefore, a model that describes data from
multiple sources ideally incorporates both variance between individ-
uals as well as variance between studies.

Although presented here as an issue to be solved, the heterogene-
ity between studies can be viewed as a strength of the aggregated
database. When a patient is compared to a single normative sample,
the assumption is that the procedure and context are the same for
both. This assumption may not be tenable, as variations on the in-
tended procedure will occur in clinical practice just as they do in
research. If enough studies can be sampled, the heterogeneity in test
scores between studies, and thus across different contexts, can be es-
timated. Therefore, normative comparisons that take this source of
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variation into account may be more accurate than normative compar-
isons ignoring this source of variation.

4.2.2 Structurally missing data

When a test has not been administered in a study, this means that the
score on this test is missing for all participants in that study.

Data with missing values can be analyzed using Full Information
Maximum Likelihood (FIML; Graham et al., 2006). In FIML, each par-
ticipant only contributes to the estimation of parameters involving
the tests that the participant has completed. If a participant has com-
pleted two tests, the participant contributes to the estimation of only
the means, variances and the covariance of those two tests. Whether
FIML leads to correct estimates is dependent on the type of missing
data, i.e. whether data are Missing Completely At Random, Missing
At Random or Missing Not At Random (MCAR, MAR and MNAR;
Schafer & Graham, 2002). These entail that the reason that data is
missing is unrelated to the remainder of the data, is related to a
known value in the data, or is related to a value that is unknown.
If the type of missing data is one of the first two types, FIML will
lead to correct parameter estimates.

Fortunately, in the current setting, healthy participants’ test scores
can be considered MCAR or at least MAR when the researcher has
decided not to include a test in the study. One violation of MCAR
could be that a researcher decides not to administer a test that has
a strong ceiling effect in a young sample. However, because the vari-
able age that explains these missing data is always recorded by both
researchers and clinicians, the type of missing data is still MAR.

The issue of missing data thus might seem to be solved by FIML.
Unfortunately, this is not the case. Missing data may complicate the
estimation of covariance parameters between tests, if a combination of
two tests has never been administered to a single participant. Missing
combinations of tests therefore deserve separate attention, and will be
discussed in the next paragraph.

4.2.3 Missing combinations of tests

Because the normative database is composed of studies that have al-
ready been conducted, there is no control over which tests are ad-
ministered to whom. In some studies, memory will have been the
primary focus, while other studies may focus on executive functions.
Therefore, some tests will be administered together in many studies,
and some tests will never be administered together. Chances are that
such missing combinations of tests will always exist, even if a large
number of studies are included.
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A multivariate normative comparison uses the covariance between
tests in determining whether a profile of scores is abnormal. If a com-
bination of two tests has not been administered, calculating the covari-
ance between these two tests is not straightforward. We here consider
two potential solutions: using a multiple imputation approach, or a
factor structure approach.

We first considered Multiple Imputation (MI). Many missing data
problems can be handled by MI (Schafer & Graham, 2002; Rubin,
1986). MI uses a regression model to predict new values for those
values that are missing, and adds simulated random error to these
predicted values. This is done multiple times for the same variable,
resulting in multiple complete versions of the same data that differ
from each other due to the random error that was added. Because in
the resulting complete datasets combinations of tests are no longer
missing, all models can be fitted to these complete datasets. Note
however that since some tests have never been administered together,
we expect that MI does not yield adequate estimates of covariance
between these tests, and thus will not be well-suited for normative
comparisons.

The second option we considered is to use factor modeling, and cal-
culate the covariances implied by the factor structure (Cudeck, 2000).
If we assume that the covariance between test scores in the database
arises from one or more underlying latent factors, we could calculate
the implied covariance of two tests from their mutual dependence
on these factors. Such an approach is feasible in the domain of neu-
ropsychology, as numerous studies have shown that a factor structure
can be used to describe covariances between neuropsychological tests
(e.g. Greenaway, Smith, Tangalos, Geda, & Ivnik, 2009; Dowling, Her-
mann, La Rue, & Sager, 2010; Mitchell, Shaughnessy, Shirk, Yang, &
Atri, 2012). If the factor model is accurately specified, i.e. the covari-
ance between tests is indeed due to dependence on the same latent
factor, the covariances should be accurately estimated and multivari-
ate normative comparisons should be accurate as well.

To summarize, multivariate normative comparisons require multi-
variate data from a normative sample that is ideally diverse in terms
of background variables. Such data can be obtained by constructing
a composite normative database consisting of control data from pub-
lished studies. This raises three issues. The first, between study vari-
ance, can be handled in a multilevel approach. The second, missing
data, can be handled by estimating the model using FIML. The third,
missing combinations of tests, can be handled either by switching
from FIML to multiple imputation or by assuming a factor structure.
We extend the multivariate normative comparisons method to accom-
modate these more complex models in the following sections, before
comparing their performance in a simulation study.
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4.3 method

In this section, we first describe multivariate normative comparisons
taking into account the effects of background variables. Second, be-
tween study variance is added to the comparison. Third, within study
covariance with missing combinations of tests is obtained either by
using MI, or by imposing a factor structure.

4.3.1 Multivariate normative comparisons

Normative comparisons are described for one patient i, that com-
pleted P tests ( p = 1, 2, ..., P ). This patient is compared to N healthy
participants in the normative sample ( n = 1, 2, ..., N ), where each
healthy participant participated in one of G studies ( g = 1, 2, ..., G ).

In a multivariate comparison, the patient’s scores on several tests
are compared simultaneously to scores of healthy participants (Huizenga
et al., 2007, Crawford & Allan, 1994, Huba, 1985). This is achieved
by adapting the multivariate Hotelling’s T2 statistic (Huizenga et al.,
2007), yielding the following equation for the Multivariate Normative
Comparison (MNC) statistic:

MNC statistic =
N − P

(N − 1)P
1

(N + 1)/N
(yi − ŷi)

′S−1(yi − ŷi) (4.1)

where yi is a vector of length P containing the test scores of patient
i, ŷi is a vector of length P containing the normative predicted scores
and S−1 is the inverse of the covariance matrix of the tests in the
normative sample, of size PxP. To evaluate whether a patient’s profile
of scores is abnormal, the MNC test statistic has to be referred to an
F distribution with P and N− P degrees of freedom (Huizenga et al.,
2007). In equation 1, the patient’s scores are compared to the patient’s
predicted scores given his or her background variables would he or
she be a member of the healthy normative sample. These predicted
scores ŷi for a patient i equal:

ŷi =

⎛
⎜⎜⎜⎜⎜⎝

ŷi1

ŷi2
...

ŷiP

⎞
⎟⎟⎟⎟⎟⎠

= ([1, x1i, x2i, x3i]⊗ I)

⎛
⎜⎜⎜⎜⎝

β1

β2

β3

β4

⎞
⎟⎟⎟⎟⎠

(4.2)

where x1i, x2i and x3i are scores on background variables for pa-
tient i, which in neuropsychological settings often correspond to sex,
age and level of education, ⊗ denotes the Kronecker-product, I is an
identity matrix of size PxP, β0 is a column vector of length P, contain-
ing the intercepts for every test. These intercepts can be interpreted
as the test scores that are predicted if the values of sex, age and level
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of education are all equal to zero. β1, β2 and β3 are column vectors of
length P, which contain the effects of a background variable on each
test. For example, β1, gives the change in test score for each test that
results from a one unit increase in background variable x1.

4.3.2 Modeling

To get estimates of the regression coefficients in β (required in eq.
2), and variances and covariances in S (required in eq. 1), a model
is fitted to the normative data. Because the variance in the norma-
tive data is due to between study and within study variability, the
covariance matrix S as it appears in equation 1 is the sum of two co-
variance matrices: one for the between study residuals and one for
the within study residuals. When we combine the model in equation
2 with between study residuals u0, that are unique to every study g,
and within study residuals ε, that are unique to every participant i,
the full model becomes:

ŷig =

⎛
⎜⎜⎜⎜⎜⎝

ŷi1

ŷi2
...

ŷiP

⎞
⎟⎟⎟⎟⎟⎠

= ([1, x1i, x2i, x3i]⊗ I)

⎛
⎜⎜⎜⎜⎝

β1

β2

β3

β4

⎞
⎟⎟⎟⎟⎠

+ u0g + εi (4.3)

where u0g is a column vector of length P containing the elements
u0g1 to u0gP, which refer to test-specific residuals unique to study
g, εi is a column vector of length P containing the elements εi1 to
εiP, which refer to test-specific residuals unique to participant i. The
covariance matrix S thus equals:

S = COVu0 + COVε (4.4)

COVu0 is a diagonal covariance matrix of size PxP of between study
residual elements u0g1 to u0gP. The diagonal elements of this matrix
represent the between study variances of the different tests. Between
studies, it is assumed that tests are uncorrelated, and therefore off-
diagonal elements are zero. It is also assumed that the effects of the
background variables do not differ between studies, which is why the
β coefficients do not get a subscript.

COVε is a covariance matrix of size PxP of within study residual
elements εi1 to εiP. The elements on the diagonal of the covariance
matrix represent the within study variances of the test scores. The off-
diagonal elements represent the within study covariances between
test scores. An example of the structure for the residual covariance
matrix S, if we leave COVε completely unstructured, is given in Table
1.
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Table 4.1: Unstructured Residual Covariance Matrix S for Four Tests

test 1 test 2 test 3 test 4

test 1 var(u01) + var(ε1) cov(ε2, ε1) cov(ε3, ε1) cov(ε4, ε1)

test 2 cov(ε2, ε1) var(u02) + var(ε2) cov(ε3, ε2) cov(ε4, ε2)

test 3 cov(ε3, ε1) cov(ε3, ε2) var(u03) + var(ε3) cov(ε4, ε3)

test 4 cov(ε4, ε1) cov(ε4, ε2) cov(ε4, ε3) var(u04) + var(ε4)

An advantage of this unstructured approach is that every within
study covariance is estimated freely, which allows for any pattern of
correlations that may exist in the data. However, this model is not
identified when combinations of tests are missing. If tests 1 and 4
are not administered to the same participants, no single value can be
identified for cov(ε4, ε1). However, it might be argued that we may
still come to an estimate of cov(ε4, ε1), if we use Multiple Imputation
(MI).

4.3.3 Multiple Imputation

In MI, a model is fitted for every dependent variable with missing
values, with other test scores and background variables as predictors.
For each missing value, a predicted value is thus calculated and a
random error term is generated. Together, these form a new plausible
value. The prediction ensures that the imputed score is near to the
scores of similar participants, and the random error term ensures that
the amount of variance in the data does not decrease. The multiple
imputation method runs this entire procedure multiple times. After
the multiple imputation step is done, the model from equation 2 with
an unstructured covariance matrix COVε is fitted to each imputed
dataset. The average is computed over each of the fitted models for
all the estimated parameters.

4.3.4 Factor structure

An alternative is to use a different specification of the within study
covariance matrix COVε. If we assume that test scores are correlated
because they are indicators of the same latent traits, we can estimate
the latent factor structure, and calculate the covariances that are im-
plied by this structure. Specifically, the covariance matrix COVε can
be restricted to an M-factor structure, where M denotes the number
of latent factors. In the M-factor model, the within study covariance
matrix COVε is

COVε = ΛΨΛ′ + Θ (4.5)
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where Λ is a factor loading matrix of size PxM relating P test scores
to M latent factors, and Λ′ is the transpose of this matrix. Ψ is a
matrix of size MxM containing the variances of the latent factors on
the diagonal, and the covariances between latent factors on the off-
diagonal. Θ is a diagonal matrix of size PxP, containing the within
study variances in test scores that are not explained by the latent
factor or background variables. Θ is diagonal because given the latent
factors, the tests should no longer be correlated (Bollen, 2002). If a
test variable is included as an indicator for a latent factor, but is not
correlated with the other test variables, the factor loading for this
variable will be estimated to be 0. In this case, all variance in this test
variable is not due to the latent factor, but is specific to this variable.

Cross-loadings, i.e. letting variables load on multiple factors, can be
added to the matrix Λ. These cross-loadings will sometimes be neces-
sary for the fit of the model. For example, if a test score on a memory
scale is also determined by how well the participant comprehends
the item verbally, a cross-loading with a verbal comprehension factor
may be advisable. If this cross-loading is not included, the covari-
ance with other verbal comprehension tasks may be underestimated.
However, adding many cross-loadings makes the factor structure less
stable, and should therefore be used only where necessary.

To identify the factor model, all factor variances on the diagonal
of Ψ are set to 1. The elements on the off-diagonal of Ψ, the factor
covariances, are freely estimated. Here we choose a confirmatory ap-
proach. That is, it is specified beforehand which variables load on
which latent factor. In practice, one may need to explore multiple
factor structure options that may be based on the literature (for ex-
ample on Greenaway et al., 2009, or Mitchell et al., 2012), based on
exploratory factor analysis (but see Fabrigar, Wegener, MacCallum, &
Strahan, 1999), or based on a hybrid of the two, where multiple plau-
sible models are compared using information criteria (Vrieze, 2012).

Substituting the within study covariance matrices in Equation 4,
the complete residual covariance matrix S is modeled by:

S = COVu0 + ΛΨΛ′ + Θ (4.6)

An example structure for S with one latent factor is given in Table
2.

Note that each off-diagonal element of the matrix in Table 2 is es-
timable, even if a combination of tests has not been administered to
the same participants (Cudeck, 2000). Therefore, an important advan-
tage of the factor structure approach is that it allows for estimation
of covariance between tests that have not been administered together.
Another advantage is that this gives a parsimonious description of the
data, which may enhance the sensitivity of normative comparisons. A
disadvantage of the factor model approach is that it assumes correct
model specification.
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Table 4.2: Residual Covariance Matrix S for Four Tests and One Latent Factor

test 1 test 2 test 3 test 4

test 1 var(u01) + λ11ψ11λ11 + θ11 λ11ψ11λ21 λ11ψ11λ31 λ11ψ11λ41

test 2 λ21ψ11λ11 var(u02) + λ21ψ11λ21 + θ22 λ21ψ11λ31 λ21ψ11λ41

test 3 λ31ψ11λ11 λ31ψ11λ21 var(u03) + λ31ψ11λ31 + θ33 λ31ψ11λ41

test 4 λ41ψ11λ11 λ41ψ11λ21 λ41ψ11λ31 var(u04) + λ41ψ11λ41 + θ44

4.3.5 Using the model estimates in comparisons

After the model is fitted, either using multiple imputation or using a
factor structure specification, the total covariance matrix of tests can
be calculated. With this covariance matrix, normative comparisons
can be made for a particular patient. Generally, the patient will have
completed fewer tests than the normative sample, and only some el-
ements of the estimated vectors and matrices will be relevant for the
normative comparison. For the tests that the patient has completed,
the relevant elements from the covariance matrix S are selected, and
the relevant elements of the vectors β0, β1, β2 and β3 are selected to
calculate the patient’s predicted test scores ŷi from eq. 1.

In applying the normative comparison method, the total number of
participants in the norm group, N, figures in equation 2. What value
to choose for N, which also impacts the degrees of freedom, is not
straightforward, for two reasons. First, the observations are not inde-
pendent due to the multilevel structure of the data. In what way this
lack of independence between observations should be reflected in the
choice of degrees of freedom is still subject of debate (Bolker et al.,
2009). Second, the number of observations available per test can vary
widely because some tests are not administered in as many studies as
other tests, and because some studies are large-scale whereas others
only investigated a few participants. These two factors leads to many
possible choices of N. We have chosen the lowest number of observa-
tions on any of the tests in the comparison to be used as N (see for
example Enders & Bandalos, 2001). This choice is conservative and
thus reduces sensitivity. However, because studies are combined, the
lowest number of observations will still be sizeable.

To summarize, normative comparisons require that we estimate
regression coefficients, variances and covariances in the normative
database. Because the normative database has a multilevel structure,
the variance has to be estimated at two levels: a between study level
and a within study level. The within study covariance between tests
cannot be estimated in a straightforward manner if two tests have not
been administered together, so a more elaborate approach is required.
In the unstructured MI approach and the factor structure approach,
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we have two alternatives that each have their own advantages and
disadvantages. The unstructured MI approach allows for any corre-
lational pattern in the data. However, there is little information on
covariance in the data when tests have not been administered to-
gether, and many covariance parameters have to be estimated in the
unstructured approach. Therefore, covariance parameters may not be
accurately estimated using the MI approach. The factor model can be
used to estimate all covariance parameters. Further, it requires fewer
parameters which may enhance sensitivity. However, the restrictive
structure may not fit the correlational pattern in the data. For both
methods, we test, in a simulation study, how well-behaved the norma-
tive comparisons are when many combinations of tests are missing.

4.4 simulation study

4.4.1 Outcomes

We examined whether the proposed procedures satisfy two require-
ments of normative comparisons. First, normative comparisons should
control false positives (i.e. type 1 error): The proportion of compar-
isons that show deviations from the norm should be equal to pre-
specified levels (e.g. 0.05) for patients who in reality do not deviate.
Second, the comparisons should have high sensitivity: Comparisons
should be able to detect deviations that truly exist. All comparisons
were two-sided, and 0.05 was used as the significance criterion for all
comparisons.

4.4.2 Parameter settings

All specific parameter settings are given in the Supplementary Ma-
terials. The parameter settings were based on the documentation of
the ANDI project (www.andi.nl, de Vent et al., 2016). This allowed
for rough estimates of the size of the effects of background variables,
the size of samples within studies, and the number of studies that
would be contributed in an aggregate database of this type. The sam-
ple sizes and number of tests were however smaller in the simulations
than in the ANDI database, as this speeded up computations in the
simulations. Data were simulated for twelve tests.

4.4.3 Simulation conditions

The simulation conditions differed in (1) the factor model that was
used to simulate data, (2) whether a patient was simulated to be dif-
ferent from the norm, (3) the pattern of missing data, and (4) the
factor model that was fitted to the data.
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Figure 4.1: Unique missing data patterns for studies by simulated factor model,
fitted model and missing data pattern. Colored boxes denote ob-
served data, white boxes denote missing data. Black lines show how
test 1 and test 4 are connected. This pattern is repeated three times
for a total of 12 tests.

First, either a one factor or a two factor model was used to simulate
normative data.

Second, the difference between the false positive condition and the
sensitivity condition was introduced by manipulating the simulated
patient data. In the false positive condition, the simulated patient’s test
scores were drawn from the same distributions as the normative data.
In the sensitivity condition, a deviation on the first test was introduced
by simulating this score from a distribution with a mean two standard
deviations lower than the mean of healthy participants, where stan-
dard deviations were defined as the square roots of the diagonal of S
(cf. eq 6).

Third, the missing pattern conditions were introduced by removing
data points per study according to one of the patterns in Figure 1.
Tests were a) administered together with each of the other tests in at
least one study in the overlap condition, b) linked to other tests via
other tests in the link condition, c) linked to other tests via a sequence
of tests in the chain condition, or d) not linked via other tests in the
disjunct condition. The percentage of missing data points was equal
over conditions, i.e. 50%. In the simulated patient data, data were
missing for tests 2, 3, 6, 7, 10, and 11.

Fourth, either an unstructured, a one factor or a two factor model was
fitted to the data. The unstructured model was fitted using MI; the one
factor and two factor models were fitted using FIML.
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All combinations of models and data occurred, except that the two
factor model was not fitted to the one factor data. For all conditions
1000 datasets were simulated. This allowed for sufficient precision in
estimates of false positive rate and sensitivity. All models were fit-
ted using Mplus and the MplusAutomation R-package (Muthén, 1997;
Muthén, & Muthén, 2012; Hallquist, & Wiley, 2013).

Multiple imputations were performed using the mice R-package
(van Buuren, & Groothuis-Oudshoorn, 2011). Because the variables
that are used as predictors may have missing data as well, Multiple
Imputation by Chained Equations (MICE; van Buuren, & Groothuis-
Oudshoorn, 2011) uses variables with imputed values in the imputa-
tion of other variables. One simulated dataset is given as an example
on github.com/JAvRZ/mplusRmodels, along with Mplus input to fit
models, R code to extract the relevant parameters from the Mplus out-
put files, and R code to perform multivariate normative comparisons
given these parameters.

4.4.4 Fitted factor model specification

In the fitted one factor model, all factor loadings were estimated, i.e.
all tests were indicators for the single latent factor. In the two fac-
tor model, to mimic a situation where the factor structure is already
known from the literature, a model was fitted where each test loaded
on the same factor as in the simulation, i.e. tests 1, 3, 5 etc. loaded
on the first factor and tests 2, 4, 6 etc. loaded on the second factor.
In the conditions where the simulated structure matched the fitted
structure, the best possible performance of the factor models in the
light of missing data could be evaluated. In the condition where data
were simulated using a two factor model, and a one factor model was
fitted, the consequences of misspecifying the factor structure could
be evaluated.

4.4.5 Multiple Imputation settings

In the MICE procedure, a number of choices had to be made. First,
a multilevel regression model with normally distributed errors was
chosen to impute values, with within study variances assumed to be
equal over studies. Multilevel models that allow within study vari-
ances to differ between studies show better imputation results (van
Buuren, 2011), but require observations for every study for every
test, which are not available for the current application. Second, back-
ground variables, and tests that were moderately or more highly cor-
related with the test to be imputed (i.e. r ≥ .10, the default in the mice
package, van Buuren, & Groothuis-Oudshoorn, 2011), were included
as predictors in the imputation models. Third and fourth, the impu-
tation algorithm ran for 10 iterations, and 50 complete datasets were
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Figure 4.2: Barplot of false positive rate by simulated factor model, fitted model and miss-
ing data pattern. The black dashed line indicates the nominal false positive
rate. Error bars represent 95% confidence intervals.

generated for each simulation (5 iterations and 5 imputed datasets
are the default in the mice package).

4.5 results

The results in the false positive condition are presented in Figure 2. If
one factor was simulated, irrespective of the pattern of missing data,
the proportion of significant results was always close to the required
.05 level. If two factors were simulated, irrespective of the pattern of
missing data, the false positive rate with a two factor model or an
unstructured model was always close to nominal. However, if the one
factor model was fitted to two factor data, the false positive rate became
unacceptably large, for all missing data patterns.

The results in the sensitivity condition are presented in Figure 3.
In the sensitivity condition, if one factor was simulated, the one factor
model outperformed the unstructured model. The advantage of the
one factor model increased with the degree of missing information, as
shown in Figure 3. The same holds true if two factors were simulated
and modeled. Note however that the high sensitivity when fitting a
one factor model to two factor data should be interpreted in the light
of the elevated false positive rate and can therefore not be celebrated.
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Figure 4.3: Barplot of sensitivity by simulated factor model, fitted model and missing
data pattern. Error bars represent 95% confidence intervals.

We examined covariance parameters to investigate why sensitivity
was higher for the one factor and two factor conditions than for the
unstructured condition, and why the false positive rate was increased
when fitting the one factor model to two factor data. Specifically, the
covariance between tests 1 and 4 is of interest, as this is the parame-
ter that should become more difficult to estimate when the extent of
missing combinations worsens. These covariance estimates are plot-
ted for every condition in Figure 4.

As shown in Figure 4, fitting the one factor model to two factor data
leads to overestimates of the covariance, regardless of the pattern of
missing data. This explains the increase in false positive rate observed
in this condition. Fitting the one factor model to one factor data, and
the two factor model to two factor data, led to correct estimation of co-
variances, regardless of the missing data pattern. For the unstructured
condition, this was not the case, as the extent of the covariance under-
estimation increased when the combinations of test scores decreased.
In the unstructured-disjunct condition, this covariance was even esti-
mated as 0. This explains the drop in sensitivity that was observed
between factor and unstructured conditions.
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Figure 4.4: Density plot of covariance estimates by simulated factor model, fitted model
and missing data pattern. The black dashed line indicates the covariance that
was simulated. Note that in the unstructured disjunct condition all estimates
were nearly zero, resulting in a very peaked distribution.
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4.5.1 Additional simulations

So far, all latent factor models involved either one or two latent fac-
tors, to examine the behavior of the two missing data solutions in
a controlled environment. In practice, more latent factors will be
needed, as most neuropsychological assessments include more than
two cognitive constructs. To investigate whether such a larger model,
with more test variables and more parameters, could be fitted, we also
performed simulations with a six-factor model. In these simulations,
data on 24 variables were simulated, that each loaded on one of the
six factors. The factor loadings were the same as in the previous simu-
lations. In this factor model, we set all correlations between factors to
0.25. Missing values were introduced with the Link pattern from the
previous simulations, again resulting in 50% missing data. Missing
data were introduced to the patient data with the same pattern as in
the previous simulations. No deviations were simulated. All 1000 sim-
ulations with a six-factor model converged. The false positive rate of
the multivariate normative comparisons was 0.07, which is still close
to nominal.

4.5.2 Empirical example

As an empirical example, we fit a factor model to a subset of the
ANDI database (de Vent et al., 2016). The subset was selected to
make sure that all variables were linked to all other variables, like
in the Link condition in the simulations, and to guarantee that at
least 100 participants were available for every variable. In total, 27
variables were selected from the WAIS III, Rey Complex Figure Task,
Modified Wisconsin Card Sorting Test, Letter Fluency, Semantic Flu-
ency, Trail Making Test, Stroop, Auditory Verbal Learning Test and
the Boston Naming Test. All studies that contributed data to ANDI
were approved by the research ethics committees of the institutions
where the studies were conducted. The data have been checked for
outliers, standardized, recoded, and transformed to normality, as is
described elsewhere (de Vent et al., 2016).

A five factor model was fitted to the data, with the five factors
representing Attention/Working Memory, Memory, Verbal Compre-
hension / Language, Executive Functions / Processing Speed and
Perceptual Organisation. This factor model was constructed on the
basis of models fitted in several neuropsychological papers (Pedraza
et al., 2005, Dowling et al., 2010, Greenaway et al., 2009). However,
it should not be considered definitive in any respect, and it is likely
that a better model can be constructed. The model is represented in
Figure 5.

In Mplus, the factor model was fitted, and the estimates of Λ, Ψ,
Θ, COVu0g and β were saved from the Mplus output. The lowest
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Figure 4.5: Example five factor model. Observed variables, i.e. test variables
and demographic variables in rectangles. Unobserved variables,
i.e. latent factors and error terms, in circles. Single-headed ar-
rows, black and gray, denote effects and factor loadings. Double-
headed arrows denote correlations. u and ε error terms are put
in a single circle to simplify the representation, although the vari-
ance components are estimated separately.
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N for these 27 variables was 153, so the numerator degrees of free-
dom would equal 27, and the denominator degrees of freedom would
equal 126.

To demonstrate the procedure, we simulated data for a hypothet-
ical highly educated female 76-year-old patient’s data. The data are
given in Table 3.

The multivariate normative comparison works as follows. First, the
demographic variables and raw scores on the test variables are en-
tered by the clinician. Second, the patient’s raw test scores are trans-
formed and standardized to be on the same scale as the transformed
and standardized norm data (de Vent et al., 2016). Second, predicted
values are computed for all test variables, using equation 2 with the
demographic values of the patient, and the regression coefficients β.
Third, the covariance matrix of these test variables is computed, us-
ing equation 6 with the estimates Λ, Ψ, Θ, COVu0g. Fourth, the MNC
statistic is computed, using equation 1, with the patient data, the pre-
dicted values, and the covariance matrix. The output of the analysis
is given in Table 4.

Because the p-value in Table 4 is smaller than our threshold of 0.05,
we can conclude that this patient deviates in a multivariate sense
from the norm. Since this is a 27-dimensional result, it cannot be
readily visualized. One option is to look at the profile of scores. These
are presented in Figure 6. This however is not a truly multivariate
presentation, as the correlations between tests are not visible.

Therefore, separate two-dimensional visualizations are also helpful.
One of them is presented in Figure 7. In this Figure, the ellipse is very
narrow because there is a high estimated correlation in the normative
sample between RCFT Immediate Recall and RCFT Delayed Recall.
The patient’s combination of scores shows a deviation: The score on
Immediate Recall is higher than predicted for a person of this sex,
age, and level of education, while on Delayed Recall, the score is
lower than predicted. Because these tests are so highly correlated, this
combination of high and low scores is rare in the healthy population.
A clinician could use this multivariate result to draw the conclusion
that the patient’s retention is worrying, given how typical the rest of
the profile of test scores is.

4.6 discussion

Multivariate normative comparisons provide a new neuropsycholog-
ical tool that is sensitive to subtle deviations in a patient’s cognitive
profile. However, these comparisons require that normative data are
available for multiple tests from the same participants. We suggest to
obtain the required normative data by providing a second life to data
from control groups of neuropsychological studies, and aim to solve
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Table 4.3: Simulated Scores on 27 Neuropsychological Test Variables.

Neuropsychological test variables Score

Digit Span 18

Arithmetic 12

Letter-Number Sequencing 10

RBMT Immediate Recall 23

RBMT Delayed Recall 10

AVLT 1-5 50

AVLT Delayed Recall 5

AVLT Recognition 29

Boston Naming Test 50

Semantic Fluency Animals 27

Semantic Fluency Occupations 25

Letter Fluency 32

Vocabulary 36

Information 22

Similarities 24

TMT A 44

TMT B 90

Digit-Symbol 55

Stroop Word 45

Stroop Color 55

Stroop Color-Word 98

MWCST Categories 5

MWCST Errors 4

Block Design 40

Matrix Reasoning 21

RCFT Immediate Recall 23

RCFT Delayed Recall 5

Table 4.4: Output of the Multivariate Normative Comparison of the Simulated Scores from Table 3.

Patient ID Sum of differences Multivariate statistic Degrees of freedom p-value

1 -1.46 1.77 27, 126 0.02
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Figure 4.6: Line plot of the standardized difference between the simulated
patient data in Table 3 and the values predicted for this patient.
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Figure 4.7: Example bivariate plot of the simulated patient data in Table 3,
in comparison to the modeled normative data. The ellipse de-
notes 95% of the bivariate distribution. The triangle denotes the
patient’s combination of scores. The dot denotes the predicted
score for a participant of the patient’s sex, age and level of edu-
cation.
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several issues that arise when using such an aggregated neuropsycho-
logical database.

First, in combining data from multiple studies, random differences
between studies need to be accounted for. This issue is solved by a
multilevel approach in which the variance between studies is esti-
mated. Second, if different tests are administered in different studies,
scores are practically missing for whole studies. This issue is solved
by using estimation methods that do not require complete data for
every test. Third, if tests have never been administered together in
any of the studies, the covariance between tests cannot be estimated.
In this article, two alternatives were considered that may potentially
solve this last issue, namely a multiple imputation method and a fac-
tor structure method.

In a simulation study, the performance of the factor structure and
multiple imputation methods was evaluated according to two criteria:
whether the false positive rate of the multivariate comparisons was
appropriate, and whether their sensitivity to detect true abnormalities
was high. The simulations show that false positive rate is adequate
for both multiple imputation and factor modeling, although the lat-
ter only if the factor structure is adequately specified. With respect to
sensitivity, simulations show that factor modeling outperforms multi-
ple imputation. We therefore conclude that when the factor structure
is adequately specified, the factor structure method is preferred and
that when this is not the case, the multiple imputation method is the
method of choice.

The proposed procedure rests on a number of assumptions. First,
it is assumed that the within study variance is homoscedastic. For
example, it is assumed that the variance in test scores is equal be-
tween healthy controls with a low and high education. This assump-
tion could very well be tenable for a wide variety of tests, but it may
be violated for tests that show a ceiling effect in the younger popu-
lation, or that require rapid responding. Variance may then be larger
for older age groups than for younger age groups (Rabbitt, 1979). If
this assumption is indeed violated, the model could be extended to
allow heteroscedastic variances. A patient’s score can then be eval-
uated using a normative comparison that includes a variance term
appropriate for the patient’s sex, age and education.

Second, it is assumed that the within study covariance is also equal
among different levels of the background variables. Again, in the
eventuality that this assumption is violated, the model could be ex-
tended to allow differences in covariances. The appropriate covari-
ance for the patient’s background would then also be included in the
normative comparison.

Third, it is assumed that the within study variances and covari-
ances are equal over different studies, as there is no reason for vari-
ances of tests or covariances between tests to differ between studies.
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However, in applications in which within study variances and covari-
ances would differ between studies, this assumption can be relaxed.

Fourth, it is assumed that the effects of background variables are
equal over different studies, and thus that there are no random effects
of these background variables. Note that restriction of the range of
the background variables within studies may lead to different effects
in different studies. For example, studies that only administer tests
to students may show no effects of age on scores, while studies that
administer tests across the lifespan may show large effects of age.
Although such random effects can be added to the model, we prefer
not to include them as they are artificially introduced by restriction
of range.

Fifth, it is assumed in several steps of the procedure, both in the
multiple imputation as well as in the factor structure method, that
the residuals are normally distributed for every test. A solution to vi-
olations would be to transform scores, which is already common prac-
tice in neuropsychology (Jacqmin-Gadda, Sibillot, Proust, Molina, &
Thiébaut, 2007). Not all variables lend themselves to transformations
to normality. For some tests, the skew will be so drastic that no trans-
formation will result in a normal distribution. To give an example,
some tasks involve a recognition trial, where the participant has to
recognize stimuli that were used in the task they have just performed.
In clinical samples, these variables can be clinically relevant, as not
recognizing all stimuli may be indicative of memory impairment. In
healthy samples however, these variables have no variance, as practi-
cally all participants obtain the maximum score.

Because of the parametric assumptions of the procedure, it would
be difficult to include such variables into the multivariate comparison.
However, it might also not be worthwhile to do so. First, variables
that have no variance in the healthy population will also be uncor-
related with all other tests in the healthy population. Therefore, the
multivariate procedure does not contribute anything beyond univari-
ate comparisons for these variables. Second, these variables may not
require a statistical assessment, as any score that is below the optimal
score is presumably a red flag to a clinician, even before normative
data are consulted.

Sixth, it is assumed for the factor model that the same factor struc-
ture holds for different studies. This assumption should be estab-
lished empirically. Dowling et al. (2010) found that their five-factor
model of neuropsychological tests was invariant across different age
groups and sexes, which is promising, but does not ensure that this
is the case across studies. Also, it is assumed that the factor structure
is stable across sexes and across all ages and education levels that are
included in the sample. This assumption may be violated in the very
old (e.g. 85 and older), as those participants’ cognitive function may
be better described by a lower number of factors than younger indi-
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viduals, due to a process known as dedifferentiation (Li et al, 2004).
The collapse into fewer cognitive factors might imply that tests are
more highly correlated in the very old than in other age groups. As a
result, sensitivity could be artificially reduced in this older age group
if the correlation structure of the whole age range is used.

Seventh, the factor model assumes that if the latent factors are
taken into account, the test scores are uncorrelated. In general how-
ever, some test scores will remain correlated, even after the factor is
taken into account. For example, two variables can have a higher cor-
relation than is expected from their dependence on the same latent
memory factor, because the two variables are both measured after a
delay of 30 minutes. To account for such an extra dependency, two so-
lutions are available. First, if enough variables of this type exist in the
dataset, a new "delayed recall factor" may be inferred, that explains
the additional correlation between these variables. Second, if data is
available on the correlation between two delayed recall measures, this
additional correlation may be added to the model directly, by estimat-
ing the corresponding off-diagonal element of the residual covariance
matrix Θ, which was previously constrained to 0. Adding these addi-
tional residual correlations to the Θ-matrix might be a good solution,
but adding too many of these reduces the stability of the original
factor model.

It is important to note that all assumptions noted above are made
about the distribution of the data in the normative sample, not the
patient sample. Therefore, distributions are allowed to be very dif-
ferent in clinical populations. For example, a different factor model
holds for patients with Alzheimer’s disease than for healthy partic-
ipants (Siedlecki, Honig, & Stern, 2008). As another example, some
test variables will in a clinical population not become normally dis-
tributed after transformation. For the multivariate normative compar-
isons procedure, this is not an issue, as the assumptions pertain to
the normative sample.

Aside from assumptions, several considerations merit attention. First,
neither the multiple imputation method nor the factor structure method
is an automatic procedure that can be applied without further thought.
For the multiple imputation method, it should be checked that mul-
tiple imputation has succeeded, for example, that imputations pro-
duce realistic values for every variable (van Buuren & Groothuis-
Oudshoorn, 2011). For the factor structure method, the appropriate-
ness of the model should be assessed using goodness-of-fit measures
(Schermelleh-Engel, Moosbrugger, & Müller, 2003) and ideally a val-
idation dataset. For the purposes of the normative comparison, the
goal of the factor model is not so much to obtain the true factor model
underlying the data. Rather, the goal is to recover the covariance ma-
trix as appropriately as possible. Therefore, different factor structures
that generate nearly equivalent covariance matrices will give rise to
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similar normative comparisons. Nevertheless, we intend to perform a
meta-analysis of factor structures proposed in the literature, to arrive
at a factor model that approximates the covariance matrix well for the
most common neuropsychological tests.

Second, we propose to first estimate the full covariance matrix for
all tests in the database, and then select the relevant elements for the
tests that the patient at hand has completed. An alternative would be
to estimate a model for just the tests that the patient has completed.
We prefer the current approach because of the beneficial nature of
adding auxiliary tests in estimation (Enders, 2006; Graham, 2003; Gra-
ham, 2009) and the computational burden of fitting a separate model
for every new patient.

Third, the variance between studies was included in the normative
comparisons with good reason, as this variance might include differ-
ences in scores that arises from between study differences in moti-
vation and administration. Methods that are currently in use do not
account for such between study variances, because they use a single
normative dataset. Therefore, patients are compared to less variable
scores, which leads to higher sensitivity to deviations. Although the
new method is appropriately modeling between study variance, sen-
sitivity may be lower because of it. To get this sensitivity back, the
patient could also be compared to the within study covariance ma-
trix instead of the full covariance matrix, to get results that are more
consistent with current practice, at the cost of decreased specificity.

Fourth, collecting data, fitting models and applying normative com-
parisons is not feasible for the typical user in clinical practice. To help
the user, the methods that have been described in this article are cur-
rently being implemented in an interactive website. This website will
allow clinical neuropsychologists to make multivariate comparisons
on a daily basis using the ANDI database (de Vent et al., 2016).

Fifth, the quality of normative comparisons is reliant on the quality
of the normative data. If the normative data contains a sample of
highly motivated volunteer participants that outperform participants
that do not want to participate, this biases the normative comparisons.
Bias may be reduced because we include demographic corrections: If
educated individuals are more likely to participate in a particular
study, this does not affect our estimates because we correct for the
influence of education. Bias may also be reduced because we include
variance between studies: If non-representative samples are included
in some but not all studies, their influence is diminished, because the
model allows for variation between studies.

However, the analysis still rests on the assumption that in general,
the included samples are similar to the general population. Therefore,
in assembling a database as described here, datasets should be se-
lected with this ulterior goal in mind. Samples that consist of friends
and family of patients are probably similar to the general popula-
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tion, and community samples are generally collected with the goal
of representativeness in mind. But perhaps, studies with convenience
samples that actively volunteered for this type of study should be
excluded to not bias the normative sample.

Normative comparisons can be impacted by non-random missing
data in the normative dataset. For example, if the very old are typi-
cally unable to complete a particular task, the very old participants
that do not have missing data on this task may be unrepresentative
of the very old population. Therefore, the data should be scrutinized
for tests that show selective missing data in sensitive populations (e.g.
the very old and lower education levels).

One additional check that can be applied would be to compare the
univariate distributions of test scores within the database, to distri-
butions of scores that are reported in test manuals. If the univariate
distributions are similar for all variables, this would provide evidence
that the database is unbiased.

Finally, the current methodology can easily be extended to other
domains. Normative comparisons are common in many fields of psy-
chology where one is interested in the performance of an individual,
for example in personnel, educational or clinical psychology, and in
medicine. In those fields, a similar data combination venture could
be undertaken, as control group data are abundant in those research
fields as well.

In conclusion, the methods proposed in this article enable multi-
variate normative comparisons that could not be made before due to
lack of multivariate normative data. If the factor structure can be ade-
quately specified, the factor modeling approach should be preferred.
If not, an unstructured multiple imputation approach is the method
of choice. In this way, without requiring any new data collection, mul-
tivariate normative comparisons can be used as a sensitive tool to aid
clinical decision making in science and in clinical practice.
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5
COGNIT IVE DOMAINS IN NEUROPSYCHOLOGY:
SUPPORT FOR THE CATTELL -HORN-CARROLL
MODEL IN TWO RESEARCH SYNTHESES

5.1 abstract

Many neuropsychologists are of the opinion that the multitude of cog-
nitive tests may be grouped into a much smaller number of cognitive
domains. However, there is little consensus on how many domains
exist, what these domains are, nor on which cognitive tests belong
to which domain. This incertitude can be solved by factor analysis,
provided that the analysis includes a broad range of cognitive tests
that have been administered to a very large number of people. In
this article, two such factor analyses were performed, each combining
multiple studies. The first analysis was a factor meta-analysis of cor-
relation matrices, combining data of 60,398 healthy participants from
52 studies. Several models from the literature were fitted, of which
a relatively complex model, based on the Cattell-Horn-Carroll (CHC)
model, was found to describe the correlations much better than the
others. The second analysis was a factor analysis of the Advanced
Neuropsychological Diagnostics Infrastructure (ANDI) database, com-
bining scores of 11,881 participants from 54 Dutch and Belgian stud-
ies not included in the first meta-analysis. Again, the model fit was
much better for the CHC model than for the other models. Therefore,
we conclude that the CHC model best describes which cognitive do-
mains there are and which test belongs to which domain. Therefore,
although it was originally developed in the intelligence literature, it
deserves more attention in neuropsychology.

5.2 introduction

Neuropsychological tests are designed to measure cognitive functions,
which may be impaired by brain disorders like Alzheimer’s or Parkin-
son’s disease, traumatic brain injury, or stroke. The tests neuropsy-
chologists use are often assigned to cognitive domains, such as exec-
utive function, memory, or attention.

There are many reasons for establishing domains of cognitive func-
tions, and for assigning tests to these domains. The first reason may

0 Submitted as: Agelink van Rentergem, J. A., de Vent, N. R., Schmand, B. A., Murre, J.
M. J., Staaks, J. P. C., ANDI Consortium & Huizenga, H. M. (2017). Cognitive domains
in neuropsychology: Support for the Cattell-Horn-Carroll model in two research syntheses.
Manuscript submitted for publication.
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be that a clinician suspects problems in a specific cognitive domain
for a particular patient, and wants to select tests from this domain to
administer. For example, if a patient comes in with subjective memory
complaints, memory could be investigated further by selecting tests
from this domain. The second reason may be that a clinician wants to
qualify whether a particular patient is suffering from impairment on
a single domain or on multiple domains. In the literature on mild
cognitive impairment (MCI), for example, single-domain or multi-
domain MCI are considered separate entities, which have separate
prognoses (Petersen, 2004). The third reason may be that a clinician
or researcher wants to use composite scores on cognitive domains as
an outcome measure, rather than separate test scores. This method
can reduce noise from individual measurement instruments (but see
Lezak et al., 2012). These composite scores may be calculated by sum-
ming the scores of individual tests that belong to a particular domain,
as is done in the calculation of performance IQ or verbal IQ. A more
sophisticated approach is to obtain estimates of a latent trait through
factor analysis or item response theory analysis of a single domain,
and use scores on the latent trait as an outcome measure (Gross et
al., 2015). The fourth reason may be to establish the validity of a par-
ticular test. If a researcher designs a new test intended to measure
memory, he or she can calculate whether scores correlate highly with
other tests in the memory domain, and do not correlate as highly
with tests from other domains. Therefore, domains can be used to
show both convergent and divergent validity.

Although domains have many uses, the idea of domains of cogni-
tive functions is not without problems. There is a lack of consensus on
which tests belong to which domain, because there are many reason-
able ways to assign tests to domains. For example, the Trail Making
Test B (TMT B), in which one has to draw a line from labeled circles
1 to A to 2 to B to 3 etc., is one test that is particularly difficult to
assign. Because it involves drawing with a pencil, and the outcome
measure is the time to completion, one could assign it to the domain
of psychomotor speed, along with tests like pegboard tests of man-
ual dexterity. However, because TMT B performance depends for a
large part on how attentive the person is, one could assign it to the
domain of attention as well, along with tests like the Continuous Per-
formance Test. Moreover, because it involves shifting back and forth
between letters and numbers, one could assign it to the domain of
executive functions, along with the Stroop Interference test.

There is also a lack of consensus on how many domains there
are. For example, there are many tests that aim to assess memory
in neuropsychology. Whether a single memory domain is sufficient,
or whether more domains are necessary, is a matter of debate (Delis,
Jacobson, Bondi, Hamilton, & Salmon, 2003). Measures of memory
could be divided into measures of an immediate recall domain and a
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delayed recall domain, or in measures of a visuospatial memory do-
main and a verbal memory domain. Of course, one could also argue
that separate domains are necessary for immediate visuospatial recall
and delayed visuospatial recall.

A factor analysis can provide some clarity through quantification
of what model best describes the correlations between tests. However,
the resulting domains depend on the method and sample of the study,
as we will outline next.

First, the factor structure that is found can depend on the tests
that are selected. For example, if a test like TMT B is administered to-
gether with tests that measure executive functioning, TMT B may also
load on a single executive functioning factor because it has elements
of shifting. However, if more speeded tests are administered, TMT B
may load on a different latent factor, processing speed, together with
other measures of processing speed. Therefore, the domain to which
a test seems to belong is dependent on the battery of tests used. Con-
sequently, comparisons across studies with different batteries of tests
become necessary.

Second, age can affect the factor structure that is found in a study,
because age affects scores on almost all neuropsychological measures.
Therefore, in a sample with a large age range, variables may become
correlated because they depend on the same age variable. Elderly peo-
ple generally score lower on all variables, and young people generally
score high on all variables. If age is not appropriately accounted for,
fitting a factor model to a sample with a large age range can provide
support for a single "cognitive" factor, on which some participants
score poorly - the elderly - and others score well - the young. One
solution would be to study the factor structure in a sample that is ho-
mogeneous in age. However, since studying a single age group limits
generalizability, an appropriate alternative is to include age in the
analysis.

Third, and similarly to the age range effect, there can be a confound-
ing effect of level of education in factor analysis. There is generally
a large effect of education on neuropsychological test scores. Again,
this may lead to the conclusion that to explain correlations between
tests, we need just a single "cognitive" factor, on which some partici-
pants score poorly - those with little education - and some score well
- those with much education. Such a single factor due to education
would not be found in samples with very similar educational back-
ground, such as college students. However, since neuropsychological
test results need to generalize beyond groups such as college students,
it may again be more appropriate to correct for the effect of education
in the analysis.

Fourth, domains can be different depending on the sample used.
This is especially true for samples of patients with very specific deficits.
A delayed recall test can become uncorrelated with other memory
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tests if delayed memory specifically is impaired by disorder or in-
jury. Therefore, the structure of domains is ideally studied separately
for healthy groups and different clinical groups. Results so far have
shown that the factor structure has large communalities for many dif-
ferent clinical groups (Bowden, Cook, Bardenhagen, Shores, & Carstairs,
2004; Park et al., 2012; Schretlen et al., 2013), but it cannot be assumed
that this is the case for all disorders.

Fifth, to get stable results for a factor analysis, many participants
have to be tested on multiple tests. The amount of variance that is ex-
plained by latent factors may be low in neuropsychology, while there
may be many latent factors, which increases the required sample size
(MacCallum, Widaman, Zhang, & Hong, 1999). However, obtaining a
large sample size for a battery of neuropsychological tests is costly, as
the tests require training to administer, are administered one-on-one,
and are time-consuming. This limits the number of participants that
can be tested in a study, or limits the size of the battery that can be
administered to a large number of participants.

Our goal is to establish how neuropsychological tests should be
assigned to domains. We will do so by using a factor analytic ap-
proach, comparing different factor models that have been formulated
in the literature. We will use the results of multiple studies, so we
can achieve a broad range of neuropsychological tests, and we will
correct for effects of demographic variables like age and level of ed-
ucation. We will study healthy adults, so the factor models are not
confounded by sample differences in clinical status. Last, through
combining different studies, samples of participants are combined to
arrive at a much larger sample size than possible with a single study.

First, we will perform a factor analysis of neuropsychological tests,
by applying a meta-analytic framework that allows for structural
equation models to be fitted to summary statistics (Cheung & Chan,
2005). Specifically, this method pools correlation matrices from multi-
ple studies to arrive at a single correlation matrix. To this correlation
matrix, multiple models can be fitted, which allows us to compare
the fit of neuropsychological factor models that have been formu-
lated in the literature. Second, we will conduct a factor analysis of
data from the Advanced Neuropsychological Diagnostics Infrastruc-
ture (ANDI) normative database (de Vent et al., 2016a). This database
contains raw data from healthy control participants from multiple
studies conducted in the Netherlands and Belgium, not included in
our first analysis.

To summarize, neuropsychology would benefit from clarity on the
number and type of cognitive domains, and on which tests belong
to which cognitive domains. This would facilitate test selection, di-
agnosis of single-domain and multi-domain disorders, calculation of
composite scores, and neuropsychological research into the construct
validity of tests.
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5.3 study 1 : factor meta-analysis

5.3.1 Methods

5.3.1.1 Literature search

A systematic literature search was conducted using PsycINFO and
MEDLINE for articles that contained a factor analysis of neuropsycho-
logical tests in healthy adults. Factor analyses were chosen, as studies
conducting a factor analysis generally recruit a large sample and ad-
minister a large battery of tests. The search strategy was developed
in PsycINFO (see Appendix 1 for the syntax), because PsycINFO is
particularly well-suited for searching psychological tests. The search
strategy for MEDLINE was based on the PsycINFO search strategy.
The search strategy consisted of the following key concepts: factor
analysis-related terms, specific neuropsychological test-related terms
and general neuropsychology-related terms. Deduplication of results
was done using Refworks, and screening of results for inclusion was
done using Rayyan (Ouzzani, Hammady, Fedorowicz, & Elmagarmid,
2016).

5.3.1.2 Exclusion criteria

The goal was to obtain for each article a healthy adult sample cor-
relation matrix, containing both neuropsychological tests and demo-
graphic variables. Articles were excluded if a) fewer than two tests of
interest were used, b) an adult sample was not studied, c) they were
published before 1997, d) a typical sample was not studied, e) test
administration was manipulated or otherwise differed from typical
administration, f) they were included in the ANDI database. Crite-
rion c was chosen because datasets published twenty years before the
literature search could not be expected to still be available from the
original authors. Criterion d entailed that we did not include groups
with psychiatric or neurological disorders (e.g., bipolar disorder or
epilepsy), with disorders that could interfere with test administration
(e.g., hearing loss), or with conditions that were studied for their cog-
nitive implications (e.g., HIV). Criterion e excluded studies in which
manipulations (e.g., TMS) were applied to participants during test-
ing, or in which novel, often computerized, versions of test batteries
were used. This last choice was made because these novel versions
are less familiar and less thoroughly validated than the common ver-
sions. Criterion f preserved the independence of the analyses done in
study 1 and study 2 of the present article.

5.3.1.3 Tests

A complete list of variables that were considered of interest is given
in Appendix 2. However, not every combination of variables was
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present in the correlation matrices that were analyzed. For twelve
test variables, correlations were available with every other variable.
To increase the number of usable correlations, different versions of
the same test variables were combined (see Table 1). These tests may
not be completely parallel, as there may be differences in test admin-
istration and scoring rules. However, the current analysis assumes
that, although there may be mean differences between versions, the
correlations with other test variables will not be different. This issue
is addressed in study 2.

5.3.1.4 Contacting authors

With a few exceptions (e.g. Adrover-Roig, Sesé, Barceló, & Palmer,
2012), articles and/or supplementary materials did not contain the
correlation matrix including both the tests and the demographic vari-
ables that were necessary for this study. Therefore, corresponding
authors of included studies were contacted. In case a researcher ap-
peared multiple times as a corresponding author in the included stud-
ies, a single, recent article was chosen which included a large selection
of tests. In this case, if the corresponding authors agreed to share a
correlation matrix, they were asked whether they would be willing to
share the correlation matrix for other articles as well. If authors did
not respond, they were reminded after a period of 2-3 weeks.

The authors were sent a list of variables of interest that were to
be included, which were the test variables that they collected in their
study, along with age, sex, and level of education. There was no spe-
cific hypothesis for the influence of sex on the factor structure, but
we chose to correct for its influence as well because this is common
in neuropsychology (Testa, Winicki, Pearlson, Gordon, & Schretlen,
2009). Level of education was scored differently in different studies,
sometimes using a seven-point-scale, sometimes using years of edu-
cation. This issue is discussed in more depth in the discussion section
and is addressed in study 2. Authors were requested to send a cor-
relation matrix of these variables, for the cognitively healthy sample
within their data. If they were unsure that their participants qualified
as cognitively healthy, possibilities for exclusion criteria within their
data were discussed. For example, if measurements from the Mini-
Mental State Examination (MMSE; Folstein, Folstein, &McHugh, 1975)
and Clinical Dementia Rating (CDR; Morris, 1997) had been taken in
their study, participants with MMSE scores below 24 and CDR scores
above 0 could be removed before the correlation matrix was com-
puted. Since these exclusion criteria depended on what the authors
had available in their data, this was an ad-hoc procedure.
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Table 5.1: Included Test Variables.

Test variable Abbreviation Additional information

Trail Making Test Part A TMTA Combined with Color Trails Test Part 1,

D-KEFS Trail Making Test condition 2.

Trail Making Test Part B TMTB Combined with Color Trails Test Part 2,

D-KEFS Trail Making Test condition 4.

Logical Memory I LMI Combined across multiple WMS versions,

combined with RBANS Story Immediate

Memory.

Logical Memory II LMII Combined across multiple WMS versions,

combined with RBANS Story Delayed

Memory.

Letter Fluency LF Synonyms: Controlled Oral Word

Association Test, Phonemic Verbal

Fluency.

Semantic Fluency SF Synonyms: Categorical Verbal Fluency.

Preferential inclusion of the "Animals"

version if multiple were available.

Digit Span Forwards DSF Combined across multiple WAIS and WMS

versions.

Digit Span Backwards DSB Combined across multiple WAIS and WMS

versions.

Coding COD Combined across multiple WAIS versions.

Synonym: Digit Symbol Substitution.

Boston Naming Test BNT

Auditory Verbal Learning Test – Total Recall VLT-TR Combined with California Verbal Learning

Test – Total Recall, the Hopkins Verbal

Learning Test – Total Recall, and RBANS

List Learning.

Auditory Verbal Learning Test – Delayed Recall VLT-DR Combined with California Verbal Learning

Test – Long-Delay Recall, the Hopkins Verbal

Learning Test – Delayed Recall, and RBANS

List Recall.
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5.3.1.5 Analysis

The analysis was carried out using R (R Core Team, 2016). First, for
each study, the correlation matrix was converted to a partial correla-
tion matrix by partialing out the influence of age, sex, and level of
education, using the psych package (Revelle, 2010).

A factor meta-analysis of the partial correlation matrices was con-
ducted using the metaSEM package (Cheung, 2014). This factor meta-
analysis consisted of two steps in itself (Cheung & Chan, 2005, Jak,
2015). First, the partial correlation matrices were pooled into a single
weighted partial correlation matrix, using the total number of partic-
ipants after exclusion for each study in the weighting. Second, using
the weighted partial correlation matrix as input, different factor mod-
els that have been described in the literature were compared. For each
model, fit was evaluated by χ2, RMSEA, SRMR, CFI, AIC, and BIC,
using the rules of thumb outlined in Schermelleh-Engel et al. (2003)
to decide what constitutes bad, acceptable and good fit.

5.3.1.6 Candidate factor models

Factor models that were broad enough to span all neuropsychologi-
cal tests were selected from the literature. This excludes factor mod-
els that describe correlations between tests from just a single domain
(e.g. Huizinga, Dolan, & van der Molen, 2006). The first model was a
model with a single latent factor on which all variables loaded. Ver-
haeghen and Salthouse (1997) used a single factor model in a meta-
analysis of correlations of neuropsychological test scores, and found
that a large part of the variance in test scores can be construed as vari-
ance on a single common latent factor. The fit of the one factor model
can be used as a reference to judge the fit of more complex models.

The second and third models came from the chapter structure of
the clinical neuropsychology reference works by Strauss et al. (2006)
and Lezak et al. (2012). Although there is not an explicit factor model
in these works, the neuropsychological tests are categorized into sep-
arate chapters. Therefore, they give a good impression of which tests
belong together in the eyes of clinical neuropsychologists. In Strauss
et al. (2006), the chapters containing the included tests were "Gen-
eral cognitive functioning", "Executive Functions", "Memory", "Ori-
entation and attention" and "Language". In Lezak et al. (2012), the
chapters containing the included tests were "Attention", "Memory",
"Executive Functions", "Verbal functions and language skills". The dif-
ference between the two was that Digit Span and Coding fall under
"General cognitive functioning" in Strauss et al. (2006), and under
"Orientation and attention" in Lezak et al. (2012).

The fourth and fifth models were based on the opinion of experts.
The fourth model was based on the domains used in Gross et al.
(2015). Gross et al. (2015) assigned tests to "Memory", "Executive
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functioning" and “Rest” domains on the basis of expert opinion. Of
the currently included tests, only the Boston Naming Test fell in the
"Rest" category. The fifth model was based on a survey of clinical neu-
ropsychologists (Hoogland et al., 2017). Twenty experts were asked
to rate, on a seven-point Likert scale, how well test variables assess
cognitive functioning on a particular domain. For the twelve tests in-
cluded here, the relevant domains were "Language", "Attention and
working memory", "Memory" and "Executive function". For the factor
model used, all mean ratings were above 4.85 on the seven-point scale,
indicating a large degree of confidence that these variables should be
assigned to these domains.

The sixth model was based on the recommendations made by Larrabee
(2014). Larrabee (2014) divided tests in six domains, on the basis of
a review of the literature. This domain specification was explicitly in-
tended to help clinicians compose a battery of tests that assesses cog-
nitive abilities from different domains. The four domains for the in-
cluded tests are "Verbal symbolic abilities", "Attention/working mem-
ory", "Processing speed", and "Learning and memory—verbal and vi-
sual".

The seventh and eight models were two variants of the Cattell-
Horn-Carroll (CHC) model as described by Jewsbury et al. (2016).
The CHC model was developed in intelligence research, rather than
in clinical neuropsychology (McGrew, 2009). Jewsbury et al. (2016)
demonstrated that the CHC model fits well in each of the nine neu-
ropsychological datasets they studied, with only minor adaptations
for each dataset. The factors for the included tests were the same
across the two variants of the CHC model: "Acquired knowledge or
crystallized ability", "Processing speed", "Long-term memory encod-
ing and retrieval", "Working memory", and "Word fluency". In the
first variant, TMTB measures "Processing speed". In the second vari-
ant, TMTB measures both "Processing speed" and "Working memory".
All factor model specifications are given in Table 2.

Each factor model consisted of the following elements, which were
freely estimated: Factor loadings describing the relationship between
the tests and the latent variables, residual variances of the test vari-
ables, and covariances between latent variables. The covariances be-
tween latent variables can be interpreted as correlations, because all
latent variable variances were fixed to 1.

5.3.2 Results

5.3.2.1 Sample

From the literature search, 3259 sources were identified. After dedu-
plication, 2520 distinct sources remained. These were judged against
the exclusion criteria, by inspection of the title, abstract, and descrip-
tion of the tests and measures that is provided in PsycINFO. After
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Table 5.2: Factor Model Specifications of the Candidate Models for Study 1. Tests that Load on the Same
Latent Factor Share a Letter. Some Tests Load on Multiple Latent Factors in the Hoogland and
Jewsbury Models.

TMTA TMTB LMI LMII LF SF DSF DSB COD BNT VLT-TR VLT-DR

One factor A A A A A A A A A A A A

Strauss D D C C B B A A A E C C

Lezak A A B B C C A A A D B B

Gross A A B B A A A A A C B B

Hoogland B B + D C C A + D A + D B B B A C C

Larrabee A A B B C C D D A C B B

Jewsbury 1 B B A + C A + C E E D D B A C C

Jewsbury 2 B B + D A + C A + C E E D D B A C C
Note: TMTA = Trail Making Test A, TMTB = Trail Making Test B, LMI = Logical Memory I, LMII = Logical
Memory II, LF = Letter Fluency, SF = Semantic Fluency, DSF = Digit Span Forwards, DSB = Digit Span
Backwards, COD = Digit Symbol Substitution / Coding, BNT = Boston Naming Test, VLT-TR = Verbal
Learning Test - Total Recall, VLT-DR = Verbal Learning Test - Delayed Recall.

this step, 330 articles were selected, of which the full-texts were ob-
tained. Seven articles were excluded because the full-text could not
be retrieved, so a total of 323 were eligible for inclusion. After e-
mailing the corresponding authors, 60 correlation matrices were ob-
tained from 57 studies (Adrover-Roig et al., 2012; Andrejeva et al.,
2016; Andreotti & Hawkins; 2015; Albert et al., 2010; Barnes et al.,
2016; Bennett & Stark, 2016; Bezdicek et al., 2014; Booth et al., 2015;
Bouazzaoui et al., 2013; Bowden et al., 2004; Bunce, Batterham, Chris-
tensen, & Mackinnon, 2014; Burns, Nettelbeck, & McPherson, 2009;
Chan et al., 2009; Chen et al., 2017; Ciccarelli et al., 2012; Darst et al.,
2015; DeYoung, Peterson, & Higgins, 2005; Duff et al., 2006; Eifler et
al., 2014; Ferreira et al., 2015; Fernaeus, Östberg, Wahlund, & Hell-
ström, 2014; Fortin & Caza, 2014; Gallagher, Gray, Watson, Young,
Ferrier, 2014; Hedden & Yoon, 2006; Hedden et al., 2014; Horvat et
al., 2014; Hueng et al., 2011; Kafadar, 2012; Karagiannopoulou et
al., 2016; Kesse-Guyot, Andreeva, Lassale, Hercberg, & Galan, 2014;
Kim et al., 2013; Komulainen et al., 2008; Krueger, Wilson, Bennett,
& Aggarwal, 2009; Laukka et al., 2013; Lehrner et al., 2014; Liebel et
al., 2017, Llinàs-Reglà et al., 2017; Mohn, Lystad, Ueland, Falkum, &
Rund, 2017; Morrens et al., 2008; Ojeda et al., 2012; de Paula et al.,
2013; Reppermund et al., 2011; Ricarte et al., 2016; Royall, Bishnoi, &
Palmer, 2015; Schmidt et al., 2017, Siedlecki et al., 2010; Snitz et al.,
2015; Sternäng, Lövdén, Kabir, Hamadani, & Wahlin, 2016; Thibeau,
McFall, Wiebe, Anstey, & Dixon, 2016; Tractenberg et al., 2010; Tse,
Balota, Yap, Duchek, & McCabe, 2010; Tuokko et al., 2009; Valenzuela
& Sachdev, 2007; Waldinger, Cohen, Schulz, & Cromwell, 2015; Watts,
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Loskutova, Burns, & Johnson, 2013; Wettstein, Kuźma, Wahl, & Heyl,
2016; Williams, Suchy, & Kraybill, 2010). Horvat et al. (2014) provided
four separate correlation matrices from four countries.

From these correlation matrices, tests were selected that were ad-
ministered together in multiple studies. This limited the number of
tests to the twelve described in the methods section. Five studies did
not include any or just one of the selected tests, and were not in-
cluded in the final analysis (Thibeau et al., 2016; Sternäng et al., 2016;
DeYoung et al., 2005; Kafadar, 2012; Burns et al., 2009). The PRISMA
diagram is given in Figure 1.

All correlations of test variables were scrutinized for miscoding.
One source showed aberrant correlations that could not be explained:
TMT B was positively correlated with other, unspeeded, tests in one
correlation matrix (the oddity of which was noted in the original pub-
lication; Royall et al., 2015). Correlations with the TMT B variable
were removed for this study. Motivating plots for this removal are
provided in Appendix 3, along with the analysis which did include
these correlations.

The final sample consisted of 60,398 participants and 55 correlation
matrices. Study characteristics are given in Appendix 4, along with
those correlation matrices for which we received explicit permission
to share them here (49 out of 55). The correlations with age, sex, and
level of education were partialed out from each correlation matrix.
Variance in correlations between studies could not be estimated be-
cause for some pairs of tests only a few studies were available. There-
fore a fixed-effects rather than a random-effects model was used to
arrive at the pooled partial correlation matrix. The pooled partial cor-
relation matrix is given in Table 3.
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Figure 5.1: PRISMA diagram.
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86 cognitive domains in neuropsychology : support for the chc model

Table 5.4: Model Comparison Results.

χ2 (df) RMSEA SRMR CFI AIC BIC

One factor 10411.2 (54) 0.056 0.218 0.941 10303.2 9816.8

Gross 6186.2 (51) 0.045 0.145 0.965 6084.2 5624.8

Hoogland* 4522.0 (45) 0.041 0.118 0.975 4432.0 4026.6

Lezak* 4635.7 (48) 0.040 0.121 0.974 4539.7 4107.3

Strauss* 3785.3 (44) 0.038 0.112 0.979 3697.3 3300.9

Larrabee 2831.5 (48) 0.031 0.098 0.984 2735.5 2303.1

Jewsbury 1 1334.0 (42) 0.023 0.060 0.993 1250.0 871.7

Jewsbury 2 1289.5 (41) 0.022 0.060 0.993 1207.5 838.2
*Model did not converge.

5.3.2.2 Model fit

The results of the model comparison between candidate models is
given in Table 4. The Hoogland et al. (2017), Lezak et al. (2012), and
Strauss et al. (2006) models did not converge. Therefore the fit mea-
sures for these models should be interpreted with caution. With re-
spect to relative fit, the AIC and BIC indicate that the two variants of
the complex Jewsbury model fit better than the other models.

With respect to absolute fit, the fit measures generally agree about
the ordering of the models as well. All χ2 values indicate bad fit
(all χ2 / df > 3), which suggests that none of the models provides
exact fit. All RMSEA values indicate good fit (all RMSEA < 0.05),
except for the one factor model, where the RMSEA value indicates
acceptable fit (RMSEA < 0.08). The SRMR values indicate bad fit for
the five simplest models (SRMR > 0.10), and acceptable fit for the
models described by Larrabee and Jewsbury et al. (SRMR > 0.05).
The CFI values indicate bad fit for the one factor model (CFI < 0.95),
acceptable fit for the model used by Gross et al. (CFI < 0.97), and
good fit for the other models (CFI > 0.97).

The best-fitting Jewsbury model is depicted in Figure 2, in which
correlations between latent variables are also provided. Because Trail
Making Test A and B are measured in time to completion, these vari-
ables and the "Processing Speed" factor that they loaded on, are re-
verse coded. Therefore, the negative correlations between "Processing
Speed" and the other latent factors should be interpreted such that
better "Processing Speed" is correlated with better scores on the other
latent factors.
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Figure 5.2: Jewsbury 2 model for the twelve tests included in study 1. For each combina-
tion of latent factors, the correlation is given.
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88 cognitive domains in neuropsychology : support for the chc model

5.3.3 Discussion

From this factor meta-analysis, we can conclude that the two Jews-
bury models provide the best fit. This is remarkable, because AIC
and BIC fit measures penalize complexity, and these two models are
the most complex. The two Jewsbury models themselves do not dif-
fer by much, but all fit measures agree that the second model, with
the extra cross-loading, fits better. Therefore, we conclude that for the
tests used here, the correlations between test variables are best de-
scribed by five cognitive domains, namely "Acquired knowledge or
crystallized ability", "Processing speed", "Long-term memory encod-
ing and retrieval", "Working memory", and "Word fluency". We also
conclude that some test variables load on multiple of these domains.

The factor meta-analysis framework has several advantages, in that
it allows for the analysis of a large number of tests and a very large
number of participants. Using the partial correlation matrices rather
than the raw correlation matrices allowed us to correct for the effects
of age, sex, and level of education.

However, there are a number of limitations to this analysis. First,
different versions of tests were used as if they are parallel. For exam-
ple, correlations with the Hopkins Verbal Learning Test, California
Verbal Learning Test, Rey Auditory Verbal Learning Test and Word
List Recall of the RBANS were treated as if these versions are identi-
cal. This choice was made to arrive at a greater degree of test overlap
between studies. However, there are differences between test versions
in test administration, the number of repetitions, and the number of
words that need to be remembered. The assumption here was that the
correlations between the sum score variable and other test variables
does not change due to these differences. This assumption may not
be tenable.

Second, there were differences in education scales and education
systems between studies. As argued in the introduction, it is neces-
sary to remove the confounding influence of education. However, the
contributing studies used different ways of coding level of education,
which means that the correction in the form of the partial correlation
was different between studies as well. Also, even if two studies used
the same scale such as years of education, such a scale may have a dif-
ferent interpretation in different countries (UNESCO, 2011; de Vent et
al., 2016b).

Third, there was some overlap in the studies that were used in
Jewsbury et al. (2016) and the studies that were included in this fac-
tor meta-analysis, so the sample that was used to develop the model
was not completely distinct from the sample used to evaluate its per-
formance. Therefore, the two analyses were not independent, which
could have artificially improved the performance of the CHC model.
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To address these issues, in the next study, the factor models will
be fitted to raw data from the Netherlands and Belgium, combined
in the ANDI database. This database allows us to use a single test
version for every variable, and to use a single standardized education
scale. Also, because raw data are available, we can directly incorpo-
rate the influence of demographic variables on test variables, rather
than using the more indirect approach of partialing out these vari-
ables from the correlations. Last, this is a completely different sample
of studies from the samples used in study 1, and the samples used by
Jewsbury et al. (2016).

5.4 study 2 : factor analysis of the andi database

5.4.1 Methods

5.4.1.1 Sample

The construction and composition of the ANDI database are described
elsewhere (de Vent et al., 2016a). This database includes data of stud-
ies that were conducted in the Netherlands and Belgium. For the data
used in the present analysis, the number of included studies was 54,
with a total of 11,881 participants. All test variables were transformed
to normality in order to meet parametric assumptions and to speed
up convergence, and were demographically corrected and standard-
ized (de Vent al., 2016a). For the demographic corrections for level
of education, we used a seven-point scale that is commonly used
in Dutch neuropsychology (Verhage, 1964). This scale is comparable
to the International Standard Classification of Education (UNESCO,
2011).

5.4.1.2 Tests

In study 2, the same test variables were included as in study 1. To
remove the influence of test versions differing between studies, we in-
cluded a single version for every test. Digit Span Forwards and Back-
wards were not included, as there were too few data for these vari-
ables for any specific version. LMI and LMII referred to Rivermead
Behavioural Memory Test Stories Immediate Recall and Delayed Re-
call. SF referred to the Animals version of Semantic Fluency. COD
referred to WAIS-III Digit Symbol-Coding. VLT referred to the Rey
Auditory Verbal Learning Test.

5.4.1.3 Model changes

Because of the removal of the Digit Span subtests, the two versions
of the CHC model collapse into a single version without "Working
memory". The remaining factors were "Acquired knowledge or crys-
tallized ability", "Processing speed", "Long-term memory encoding
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Table 5.5: Factor Model Specifications of the Candidate Models for Study 2. Tests that Load on the
Same Latent Factor Share a Letter. Some Tests Load on Multiple Latent Factors in the Hoog-
land and Jewsbury Models.

TMTA TMTB LMI LMII LF SF COD BNT VLT-TR VLT-DR

One factor A A A A A A A A A A

Strauss D D C C B B A E C C

Lezak A A B B C C A D B B

Gross A A B B A A A C B B

Hoogland B B + D C C A + D A + D B A C C

Larrabee A A B B C C A C B B

Jewsbury B B A + C A + C E E B A C C
Note. TMTA = Trail Making Test A, TMTB = Trail Making Test B, LMI = Logical Memory I, LMII =
Logical Memory II, LF = Letter Fluency, SF = Semantic Fluency, COD = Digit Symbol Substitution /
Coding, BNT = Boston Naming Test, VLT-TR = Verbal Learning Test - Total Recall, VLT-DR = Verbal
Learning Test - Delayed Recall.

and retrieval", and "Word fluency". Like in study 1, factor loadings
and covariances between latent variables were freely estimated. All
latent variable variances were fixed to 1, so the covariances between
latent variables can be interpreted as correlations. Residual variances
of the tests are freely estimated as well.

The models were fitted using Mplus (Muthén & Muthén, 2012).
Like in study 1, fit was evaluated by χ2, RMSEA, SRMR, CFI, AIC,
and BIC using the rules of thumb outlined in Schermelleh-Engel et al.
(2003) to decide what constitutes bad, acceptable, and good fit.

5.4.2 Results

The Gross and Strauss models did not converge.. The Lezak model
produced an error. The Jewsbury model converged, but produced a
warning indicating a negative residual variance, which may indicate
misspecification if the negative variance is large (Kolenikov & Bollen,
2012). However, the variance was not significantly different from 0, θ

= -0.032, z = -0.581, p = 0.561.
The results of the model comparison between candidate models is

given in Table 6. With respect to relative fit, the AIC and BIC indicate
that the complex Jewsbury model fits better than the other models.

The χ2 values indicates bad fit for all models ( χ2 / df > 3 ), except
for the Jewsbury model, for which fit was acceptable ( χ2 / df > 2
). All RMSEA values indicate good fit (all RMSEA < 0.05), except
for the one factor model, for which the RMSEA indicates acceptable
fit (RMSEA < 0.08). The SRMR values indicate bad fit for the one
factor and Hoogland models (SRMR > 0.10), and acceptable fit for the
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Table 5.6: Model Comparison Results.

χ2 (df) RMSEA SRMR CFI AIC BIC

One factor 1647.0 (32) 0.065 0.149 0.736 73659.1 73880.6

Gross* - - - - - -

Hoogland 379.5 (24) 0.035 0.103 0.942 72407.6 72688.1

Lezak 368.3 (26) 0.033 0.092 0.944 72392.4 72658.2

Strauss* - - - - - -

Larrabee 370.5 (29) 0.031 0.095 0.944 72388.6 72632.3

Jewsbury 70.0 (24) 0.013 0.054 0.992 72098.1 72378.7
*Model did not converge or produced an error. - = not available from output.

Lezak, Larrabee, and Jewsbury models (SRMR > 0.05). The CFI values
indicate bad fit for all models (CFI < 0.95), except for the Jewsbury
model, for which fit was good (CFI > 0.97).

Next, we compared the CHC model fitted in study 2 to the CHC
model fitted in study 1, to determine whether the factor structure
was stable across the two analyses. The methods used in the two
studies were dissimilar, i.e., correlation matrices served as the out-
come measure in study 1 and actual test scores were the outcome
measure in study 2. Because the scale of factor loadings and resid-
ual variances is dependent on the scale of the outcome measure, it
is not warranted to compare factor loadings or residual variances be-
tween studies. However, the correlations between latent variables can
be compared. To make the models comparable, the CHC model with-
out the "Working Memory" latent variable from study 2 was fitted
to the meta-analytic data from study 1 without DSF and DSB. The
model is depicted in Figure 3, in which correlations between latent
variables are also provided. Like in study 1, the "Processing Speed"
factor is reverse coded. It can be seen that the correlations were in
the same direction in both studies, and that correlations were lower
for the second study. This could be due to the more appropriate de-
mographic corrections: Regression-based corrections of the raw data
were used rather than using a partial correlation approach, and level
of education was coded on the same seven-point scale for all included
samples.

5.5 general discussion

In this article, we sought to establish the cognitive domains that are
measured by neuropsychological tests. Cognitive domains are used
on a daily basis by neuropsychologists, to make decisions on which
tests to administer to a particular patient, to determine whether a dis-
order affects a single domain or multiple domains, to calculate com-
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92 cognitive domains in neuropsychology : support for the chc model

Figure 5.3: Jewsbury model for the ten tests included in study 2. For each combination of latent factors,
the correlation is given for the meta-analytic data in roman type, and for the ANDI data in
italic type.
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posite scores of different tests belonging to the same domain, and to
validate new tests that are designed to measure a particular cognitive
function.

We compared several neuropsychological factor models that have
been formulated in the literature. First, we performed a factor meta-
analysis of correlation matrices, using the meta-analytic structural
equation modeling framework (Cheung & Chan, 2005). Second, the
different factor models were fitted to raw data from the ANDI database
(de Vent et al., 2016a). Both analyses included a large number of neu-
ropsychological tests, a very large sample, and accounted for the ef-
fects of age, sex, and level of education. Using these two different
methods and samples, the same result was obtained: The Cattell-
Horn-Carroll (CHC) model was shown to be the model that best de-
scribed the data.

For the tests that were considered in this article, the CHC model
consists of five intercorrelated factors: "Acquired knowledge or crys-
tallized ability", "Long-term memory encoding and retrieval", "Pro-
cessing speed", "Working memory", and "Word fluency". The Boston
Naming Test and Logical Memory variables loaded on the first fac-
tor. The Verbal Learning Test variables and Logical Memory variables
loaded on the second factor. Digit Symbol Substitution and Trail Mak-
ing Test Parts A and B loaded on the third factor. The Digit Span vari-
ables and Trail Making Test Part B loaded on the fourth factor. Letter
Fluency and Semantic Fluency loaded on the fifth factor.

The CHC model has three unique aspects compared to the other
models fitted in this article. First, Letter Fluency and Semantic Flu-
ency are typically paired with either the Boston Naming Test to form
a "Language" factor (Larrabee) or are considered "Executive Func-
tioning" tests (Strauss, Lezak, Gross, Hoogland). In the CHC model
as formulated by Jewsbury et al. (2016), a separate factor is esti-
mated for these fluency tests (Jewsbury & Bowden, 2016). Second,
the Boston Naming Test is typically either a constituent of a "Ver-
bal" factor (Larrabee, Hoogland) or is considered as separate from
the other tests considered here (Strauss, Lezak, Gross). In the CHC
model, the Boston Naming Test is paired with the Logical Memory
variables to form the "Acquired knowledge or crystallized ability"
factor. Third, the Digit Span variables are typically paired with Cod-
ing (Strauss, Lezak, Gross, Hoogland) and Trail Making Test Part A
(Lezak, Gross, Hoogland). In the best-fitting CHC model, the Digit
Span variables formed a separate factor and were not paired with
any of these variables. Fourth, all other models, except for Hoogland,
had no cross-loadings, i.e. all variables only belonged to one domain.
The best-fitting CHC model had three cross-loadings, with the Trail
Making Test Part B measuring both "Working memory" and "Process-
ing speed", and Logical Memory Immediate Recall and Delayed Re-
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call measuring both "Acquired knowledge or crystallized ability" and
"Long-term memory encoding and retrieval".

Jewsbury et al. (2016) found that the CHC model provides a good
fit for several datasets. The current study adds to the Jewsbury et
al. findings in several ways. First, in two studies we were able to
perform a single analysis of multiple datasets, thereby yielding a very
large sample size. Second, the fit of the CHC model was good even
though we corrected for age, sex, and level of education, which could
have distorted earlier analyses. Third, we compared the CHC model
to various alternatives, and even among those alternatives, the CHC
model provided the best fit. Therefore, this article provides strong
evidence for the CHC model.

The fact that the CHC model fits better than other models has a
number of consequences for neuropsychology. First, a consequence
of the cross-loadings in the CHC model is that it corroborates the
view that tests generally measure more than one domain. For test
selection, this does not mean that these are bad tests to administer,
but rather that they can be informative for multiple domains at once.
For example, if a low score on Trail Making Test Part B is observed,
this could indicate impairment of "Processing speed" if observed with
a low score on Trail Making Test Part A, and indicate impairment of
"Working memory" if observed with a low score on Digit Span.

Second, the result has implications for the distinction between single-
domain and multi-domain disorders. These disorders have typically
been defined referring to the domains based on expert opinion, that
is, "Executive Functions", "Memory", "Attention" etc. (Petersen, 2004).
Given the results, it seems better to work instead with "Long-term
memory encoding and retrieval", "Acquired knowledge or crystal-
lized ability", "Processing speed", "Working memory", and "Word flu-
ency". Application of the single-domain and multi-domain criteria
with these domains would be straightforward. However, it is not clear
whether the results that have been obtained in studies using the tradi-
tional domain definition (e.g., Ganguli et al., 2010; Libon et al., 2010)
also hold with the CHC domain definition. It could be worthwhile to
go back to already published data, and apply the criteria using the
CHC domains to study their prognostic value in comparison to that
of the criteria using the traditional domains. One important domain
in terms of diagnosis in the traditional model is the "Memory" do-
main, which is used to define amnestic variants of disorders (Tabert
et al., 2006). For the CHC model, the "Long-term memory encoding
and retrieval" domain could be used for the same purpose, as all the
same tests that load on the "Memory" factor load also on this factor.

Third, by calculating composite scores for a particular cognitive
domain, one assumes that differences between people in their test
scores are due to differences in their latent ability on this cognitive
domain, i.e., that the cognitive domain is unidimensional (Borsboom,
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2008). This is done for example in the calculation of an "Executive
functioning" composite score (e.g. Gross et al., 2015), where one im-
plicitly assumes that individual variation on Trail Making Test Part B,
Coding, and Digit Span Backwards is due to individual variation in
Executive functioning. We would advise against calculating such an
"Executive functioning" composite score: The variables that are typi-
cally assigned to the "Executive Functioning" domain are spread out
over three domains in the best-fitting CHCmodel ("Processing speed",
"Working memory", and "Word fluency"), suggesting that unidimen-
sionality is violated.

Fourth, it should be recognized that in both analyses, all latent fac-
tors were correlated in the CHC model. The influence of age and level
of education that could have artificially produced such a correlation,
had been partialed out. Therefore, although the tests in neuropsy-
chological practice are designed to measure well-separable cognitive
domains, these domains do not in fact seem completely separable.
This could be due to the design of the tests. Perhaps tests have not
been designed such that they can specifically measure individual vari-
ation only in "Working memory" while not also measuring variation
in "Processing speed". However, this could also be due to the nature
of cognitive functioning. All cognitive functions could be so deeply
intertwined that it is not possible to measure one without the other
(van der Maas et al., 2006).

It is important to realize the limitations of our results. First, the goal
was to establish a factor model for cognitively healthy participants,
but some participants included in the analyses may not have been
cognitively healthy. Some of the contributing studies did not have the
explicit goal to exclude pathology, but instead had the goal to obtain
a representative sample from the population. This is true for both
studies 1 and 2. Second, we should be careful not to overgeneralize
the results to other samples. Tests loading on the same latent factor
are not necessarily redundant measures of the same latent construct
in all samples. For example, immediate recall and delayed recall on
the Verbal Learning Tests were found to be indicators of the same
latent factor in the CHC model. However, immediate and delayed re-
call are not interchangeable tests in clinical practice, as the function of
one may be disrupted by disorder or injury while the other remains
intact (Delis et al., 2003). Third, only part of the CHC factor model
was tested in this study. Twelve variables were included in study 1
and ten variables were included in study 2, whereas many more test
variables are used in clinical neuropsychology. With correlation ma-
trices from newly published studies, the present meta-analysis could
be extended to include other variables. To facilitate such an analysis,
we provide correlation matrices in the appendix. We recommend that,
as a rule, correlation matrices are shared publicly in articles or in sup-
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plemental materials, to facilitate the type of meta-analysis presented
here.

To conclude, in two independent large-scale analyses the Cattell-
Horn-Carroll (CHC) model best describes the structure of neuropsy-
chological test domains. This model is more complex than models cur-
rently in use in neuropsychology, as it incorporates more domains, as
tests load on multiple domains, and as domains are correlated. How-
ever, we have shown that such complexity is necessary to provide an
accurate representation of cognitive functioning.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 105PDF page: 105PDF page: 105PDF page: 105

6
PRED ICT ING PARK INSON ’ S D I SEASE DEMENT IA
US ING MODERN NEUROPSYCHOLOGICAL
TECHNIQUES

6.1 abstract

Background: Parkinson’s disease with mild cognitive impairment (PD-
MCI) is a risk factor for the development of dementia (PDD) at a later
stage of the disease. The consensus criteria of PD-MCI use a tradi-
tional test-by-test normative comparison. The aim of this study was
to investigate whether a new multivariate statistical method allowing
a formal evaluation of a patient’s profile of test scores given a large
aggregated database with regression-based norms, provides a more
sensitive tool for predicting dementia status at three and five year
follow up.

Methods: Cognitive test results of 123 newly diagnosed PD patients
from a previously published longitudinal study were analysed with
three different methods. First, the PD-MCI criteria were applied in
the traditional way. Second, the PD-MCI criteria were applied using
the large aggregated normative database. Last, multivariate norma-
tive comparisons were made using the same aggregated normative
database. Progression to dementia after three and five years was used
as a gold standard.

Results: The multivariate normative comparison was characterized
by higher sensitivity and higher specificity in predicting progression
to PDD at follow-up than the two PD-MCI criteria methods.

Conclusion: Modern statistical techniques allow for a more sensi-
tive prediction of PDD than the traditional PD-MCI criteria.

6.2 introduction

Many Parkinson’s disease (PD) patients show a decline in cognitive
functioning, often already early in the disease course (Aarsland et al.,
2001; Hobson & Meara, 2004; Muslimovic et al., 2003). Mild Cognitive
Impairment (PD-MCI) is predictive of further decline and progression
to Parkinson’s disease dementia (PDD; Aarsland et al., 2001; Caviness
et al., 2007; Williams-Gray et al., 2007; Hoogland et al., 2017) It is im-
portant to accurately predict which patients will develop PDD as it

0 Submitted as: Agelink van Rentergem, J. A.*, de Vent, N. R.*, Huizenga, H. M.,
Murre, J. M. J., ANDI Consortium, & Schmand, B. A. (2017). Predicting Parkinson’s
disease dementia using modern neuropsychological techniques. Manuscript submitted for
publication.
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may have implications for patient care, for example choice of medi-
cation (such as avoiding anticholinergic drugs) and planning of assis-
tance. Also, accurate prediction enables a more appropriate selection
of patients for cognitive interventions or pharmaceutical trials.

Clinical criteria for PD-MCI have been proposed by a task force of
the International Parkinson and Movement Disorder Society (MDS;
Litvan et al., 2012). In order to diagnose PD-MCI at level II (i.e. the
level with most diagnostic certainty), a PD patient should experience
subjective cognitive complaints (or their relatives should report such
complaints) and should be impaired on objective cognitive testing.
Litvan et al. (2012) recommend to administer at least two tests for
each of five cognitive domains, thus a minimum of 10 tests, of which
at least two tests need to indicate impairment before a PD-MCI di-
agnosis is set. Impairment is usually assessed by comparing the pa-
tient’s test scores to those of normative samples, often in the form of
norm tables that accompany published test manuals.

There are several issues with this way of working. First, each test
has its own normative sample. Therefore, a patient is compared to dif-
ferent samples for each test. This means that the normative samples
can differ in demographic composition, which means that a patient
can be impaired on one test, and not another, merely because the
samples against which the patient is compared are different. Second,
since the normative data have been collected for each test separately,
correlations between tests are usually unknown (except in rare cases
of co-normed tests). Because the correlations are unknown, they can-
not formally be taken into account in neuropsychological assessment.
This makes it hard to evaluate abnormal combinations of scores (e.g.
an abnormal score profile; Huizenga et al., 2007). Third, scores can-
not always be corrected for the influence of demographic variables,
even though age, sex and level of education are known to influence
the scores on neuropsychological tests. It is often impossible to si-
multaneously correct for level of education, sex and age (Lezak et al.,
2012). Also, when correction for age is possible, separate norms are
presented for different age groups. When a patient gets older and
shifts from one age group to the next, the interpretation of their test
results can be different and may, for example, change from abnormal
to normal (Zachary & Gorsuch, 1985). Fourth, when evaluating more
than one test (at least 10 in the case of level II PD-MCI diagnosis), the
likelihood of obtaining an abnormal score by chance alone increases
with the number of tests that have been administered (Binder et al.,
2009).

In this study, we applied a new statistical method to detect cogni-
tive abnormality in newly diagnosed PD patients to predict PDD at
later follow-up. This method uses an aggregated normative database
of neuropsychological tests (de Vent et al., 2016).



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

6.3 methods 99

Because the database contains data of co-normed neuropsychologi-
cal tests, correlations between tests can be taken into account. This al-
lows for a so-called multivariate normative comparison, which allows
evaluation of a patient’s profile of test scores. Multivariate normative
comparison can detect abnormal combinations of high and low scores
in a score profile, which are easily overlooked in traditional, univari-
ate normative comparisons (Crawford & Garthwaite, 2002; Huizenga
et al., 2007; Su et al., 2015). The database contains information on
demographic variables and thus allows correcting for age, level of ed-
ucation and sex. By using regression-based demographic corrections,
drastic changes in the interpretation of test scores when moving from
one norm table to the next, are prevented. The new statistical method
keeps the false positive rate under control, because it entails a single
statistical comparison.

To examine whether this new approach is a good alternative to tra-
ditional (univariate) normative comparisons when predicting PDD,
we compared its performance to that of the PD-MCI criteria. We
used existing data from a longitudinal study conducted by our group
(Broeders et al., 2013; Muslimovic et al., 2013; Broeders et al., 2013).
First, we compared the ability of the traditional PD-MCI criteria to
predict PDD after 3 and 5 years to the PD-MCI criteria when ap-
plied with a large normative database of co-normed tests. Second,
we compared the traditional PD-MCI criteria to the new multivariate
normative comparisons method when applied with the same large
normative database. Finally, in supplement 2 we explored whether
the new approach can give insight into which cognitive domains are
impaired in PD-MCI patients who decline to PDD.

6.3 methods

6.3.1 PD patients

Participants were 123 patients with newly diagnosed PD (Muslimovic
et al., 2005; Broeders et al., 2013) who at baseline were younger than
85 years, non-demented, had no history of stroke, and had a score
of at least 24 on the Mini-Mental State Examination (MMSE; Lezak
et al., 2012). Some patients did not participate in neuropsychological
assessments after the baseline session but could still be included for
the present analysis because information on their clinical status was
available at the 3 and 5 years follow-up. After 3 years, the clinical
status for 26 patients were missing. After 5 years, information was
no longer available for another 24 patients. An overview of the demo-
graphic characteristics can be found in supplement 1.
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6.3.2 PD-MCI

Broeders et al.15 applied the PD-MCI level II criteria (Litvan et al.,
2012) as follows: 1) Patient has a PD diagnosis. 2) Patient, caregiver
or clinician reports gradual cognitive decline. 3) Patient shows cog-
nitive deficits on neuropsychological testing. 4) Cognitive deficits do
not significantly interfere with functional independence. With respect
to the first criterion, all patients in the sample were newly diagnosed
PD patients; the diagnosis was checked by the study neurologists
at follow-up. With respect to the second criterion, gradual cognitive
decline reported by the patient was assessed by two questions, ask-
ing whether the patient experienced memory problems or concentra-
tion problems. If participants answered either question with "yes" or
"sometimes", this was recorded as experiencing subjective complaints.
With respect to the third criterion, a score of 1.5 SD below the demo-
graphically corrected mean on at least two tests was considered a
cognitive deficit. With respect to the fourth criterion, patients were
excluded if they had a score lower than 24 on the MMSE (Lezak et al.,
2012). Finally, patients could also be diagnosed with PD-MCI if they
reported no subjective complaints but had impairments (of 1.5 SD) at
four or more tests.

6.3.3 PDD

PDD was used as the gold standard. PDD at 3 and 5 years follow-
up was diagnosed by the MDS criteria.19 Criteria for PDD were de-
fined as follows: 1) A diagnosis of PD prior to the onset of demen-
tia. 2) an MMSE score lower than 24. 3) No depression. 4) Cogni-
tive deficits severe enough to interfere with daily living, measured
by the Barthel Activities of Daily Living (Collin, Wade, Davies, &
Horne, 1988), Schwab & England Scale (Schwab & England, 1969),
and Functional Independence Measure (Van Putten, Hornbart, Free-
man, & Thompson, 1999). Also, an abnormal score on at least two of
the following tests was required: clock drawing (Lezak et al., 2012),
pentagon copying or serial 7s of the MMSE (Lezak et al., 2012).

6.3.4 Materials

PD patients were tested on five cognitive domains: memory, language,
executive functions, visuospatial skills and attention. All test vari-
ables from the Broeders et al. (Broeders et al., 2013) study were used
except the Modified Wisconsin Card Sorting Test (Lezak et al., 2012)
as its score distribution was extremely skewed, violating the assump-
tions of the parametric normative comparisons that are used through-
out this article. We substituted it by the Tower of London (Lezak et
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Table 6.1: Characteristics of the Neuropsychological Test Variables in ANDI.

N % Men Age range Demographic

variablesa

Memory

Rey Auditory Verbal Learning Test - total 5017 50 18-97 S + A + E

Rey Auditory Verbal Learning Test - delayed recall 4540 49 18-97 S + A + E

Rivermead Behavioral Memory Test - Story subtest - immediate recall 346 40 19-90 S + A + E

Rivermead Behavioral Memory Test - Story subtest - delayed recall 353 40 19-89 S + A + E

Language

30-item Boston Naming Test 467 42 18-89 S + A + E

WAIS-III Similarities 274 36 18-80 E

Executive functions

Controlled Oral Word Association Test 2894 48 18-97 S + A + E

Tower of London - total movement score 62 53 40-80 A

Visuospatial/constructive skills

Judgement of Line Orientation 69 54 40-80 S + E

Clock Drawing Test 167 46 40-82 E

Attention

WAIS-R Digit Symbol Test 2122 43 18-91 S + A + E

Trail Making Test - part A 3216 47 18-97 S + A + E
aAs explained elsewhere (de Vent et al., 2016), an AIC selection procedure was used to esti-
mate which of the three demographic variables to include in regression-based demographic
corrections. In this column, S, A and E indicate whether sex, age and level of education were
included for each variable.

al., 2012) as an alternative test for the executive functions domain. An
overview of the tests can be found in Table 1.

6.3.5 Normative control sample

For normative comparisons we used either the published norms of
each neuropsychological test or the database of the Advanced Neu-
ropsychological Diagnostics Infrastructure (ANDI; de Vent et al., 2016).
ANDI is an online tool that can be used by clinicians and researchers
to conduct normative comparisons. ANDI has a large aggregated nor-
mative database (N=26,939) which consists of participants that either
participated as healthy control subjects in clinical studies, or partici-
pated in community-based studies. Since each participant completed
only a subset of the tests which are included in ANDI, the number
of participants per test varies between 69 and 5783 depending on the
test. Table 1 provides the number of participants per test and demo-
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graphic information. For most test variables, sex, age and level of edu-
cation had a significant effect, and were included in the demographic
correction (de Vent et al., 2016).

6.3.6 PD-MCI criteria applied with ANDI’s normative data

In applying the PD-MCI criteria, Broeders et al. (2013) followed typ-
ical neuropsychological practice and used normative data from test
manuals and various other sources to judge whether a patient devi-
ated from the norm. Here, we applied the PD-MCI level II criteria in
the same way but now with the ANDI database instead of the norma-
tive data accompanying each test. A difference between the norms is
that the ANDI data have been treated in a consistent manner across
all tests (de Vent et al., 2016). This includes uniform procedures of
outlier removal, test score standardization, and selection of transfor-
mations to normality. Also, for many tests, a larger normative sample
is available. Student’s t-statistics were used in calculating whether
scores were abnormal (Crawford & Garthwaite, 2002). A threshold
p-value of 0.067 one-tailed was used to define impairment, which cor-
responds to -1.5 SD below the mean. Because tests were one-tailed,
only deviations in the negative direction were classified as impaired.

6.3.7 Abnormality as defined by MNC

Finally, we examined the performance of multivariate normative com-
parisons (MNC) 8. MNC compares the profile of the patient’s scores
to the norm, i.e., to the profile of scores that is predicted for a healthy
participant of the same sex, age and level of education (Agelink van
Rentergem et al., 2017; Agelink van Rentergem et al., 2017). MNC
result in a p-value, which indicates abnormality when it is below
a certain threshold. We tested for impairment (one-sided), i.e., only
deviations in the negative direction were classified as impaired. In
univariate comparisons, if the patient had no subjective complaints,
we required four instead of two significant deviations. In MNC this
adaptation is not possible, as only a single comparison is performed.
Therefore, we used different threshold values for those with and with-
out subjective complaints. For patients without subjective complaints,
a threshold p-value of 0.067 was used. For patients with subjective
complaints, a more lenient threshold p-value of 0.134 was used.

6.3.8 Analysis

We calculated whether the classification at baseline is predictive of
developing PDD. Sensitivity and specificity were compared across
the three methods: PD-MCI criteria, PD-MCI criteria with ANDI, and
MNC applied with ANDI. Sensitivity was calculated by dividing the
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Table 6.2: Demographic and Clinical Characteristics for the Three Groups (PD-MCI
criteria, ANDI PD-MCI criteria and ANDI MNC) at Baseline.

PD-MCI criteria ANDI PD-MCI criteria ANDI-MNC

normal cognition PD-MCI normal cognition

N = 80 (65%) N = 43 (35%) N = 90 (73%)

Age 65.1 (10.6) 68.0 (10.1) 64.4 (10.7)

Sex M/F 43/37 23/20 46/44

MMSE 28 (1.9) 27 (2.0) 28.1 (1.9)

Disease duration in months 18.3 (8.9) 20.1 (13.4) 18.0 (8.8)

LED 139.0 (142.6) 149.9 (139.3) 139.1 (143.5)

UPDRS 15.8 (7.8) 19.4 (7.8) 16.2 (8.2)

H&Y 1.6 (0.7) 2.1 (0.7) 1.7 (0.7)

HADS 8.5 (6.6) 13.5 (7.5) 9.4 (7.1)

SE-ADL 91.2 (5.8) 88.1 (7.9) 90.6 (6.9)

BADL 19.7 (0.7) 19.4 (1.5) 19.6 (1.2)
Abbreviations: PD-MCI = Parkinson’s Disease Mild Cognitive Impairment; MNC
= Multivariate Normative Comparisons; MMSE = Mini-Mental State Examination;
LED = Levodopa Equivalent Dose; UPDRS = Unified Parkinson’s Disease Rating
Scale; H&Y = Hoehn & Yahr scale; HADS = Hospital Anxiety and Depression
Scale; SE-ADL = Schwab & England Activities of Daily Living; BADL = Behavioral
Assessment of Daily Living.

number of patients who were classified as impaired at baseline and
develop PDD, by the total number of patients who developed PDD.
Specificity was calculated by dividing the number of patients who
were classified as not-impaired at baseline and did not develop PDD,
by the total number of patients who did not develop PDD. This was
done separately for the development of PDD after three years, and
after five years.

6.4 results

6.4.1 Demographic characteristics

In Table 2, demographic and clinical characteristics are given for the
patients, separated into cognitively normal and abnormal categories
using each of the three methods.

6.4.2 Progression to PDD

Figure 1 shows the progression to PDD for each method. With the
criteria used by Broeders et al. (2013) , 35% of the PD patients had
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Figure 6.1: Progress of PD patients (n = 123) to PDD after 3 (n = 97) and 5 years (n = 73) for the
three methods; PD-MCI criteria, PD-MCI criteria applied with ANDI, and multivariate
normative comparisons (MNC) applied with ANDI.

PD-MCI at baseline. After three years, 16% of the PD-MCI patients
had progressed to PDD and 65% had not. Of the group who did not
have PD-MCI, 3% of patients nevertheless had progressed to PDD
and 75% had not (the remaining patients were lost to follow-up; see
supplementary materials). After five years, 23% of those with PD-
MCI at baseline had progressed to PDD while 32% had not. Of the
group who did not have PD-MCI, 9% had progressed to PDD while
53% had not.

The PD-MCI criteria applied with ANDI show that 27% of the pa-
tients had PD-MCI at baseline. After three years, 18% of the PD-MCI
patients had progressed to PDD and 61% had not. Of the group who
did not have PD-MCI, 3% had progressed to PDD and 55% had not.
After 5 years, 24% of the PD-MCI patients had progressed to PDD
and 24% had not. Of the group who did not have PD-MCI, 10% pa-
tients had progressed to PDD while 53% had not.

The multivariate normative comparisons (MNC) method applied
with the ANDI normative data shows that 26% PD patients were con-
sidered to be MNC-impaired at baseline. After 3 years, 25% of the
MNC-impaired PD patients had progressed to PDD and 50% had
not. Of the group who were not MNC-impaired, 1% had progressed
to PDD and 79% had not. After 5 years, 38% of the MNC-impaired PD
patients had progressed to PDD and 19% had not. Of the group who
were not MNC-impaired, 5% patients nevertheless had progressed to
PDD while 54% had not.

In Figure 1, it is not visible how much overlap there is in the three
different types of diagnostic methods at baseline. For example, the 32
classified as MNC-impaired could be different patients from those 33
classified as having PD-MCI using ANDI. The overlap in diagnoses
between pairs of classification methods is explored in supplement 3.
Each of the three methods did indeed differ somewhat in the patients
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Table 6.3: Sensitivity and specificity for PDD of each method (original PD-MCI crite-
ria, PD-MCI applied with ANDI, and MNC method applied with ANDI),
specified for 3 and 5 year follow up. In parentheses: 90% confidence inter-
val.

3 year follow-up 5 year follow-up

sensitivity specificity sensitivity specificity

PD-MCI criteria 0.78 (0.50-0.93) 0.68 (0.60-0.76) 0.59 (0.39-0.76) 0.75 (0.64-0.83)

PD-MCI criteria ANDI 0.67 (0.40-0.86) 0.77 (0.69-0.84) 0.47 (0.29-0.66) 0.86 (0.76-0.92)

MNC ANDI 0.89 (0.61-0.99) 0.82 (0.74-0.88) 0.71 (0.50-0.85) 0.89 (0.80-0.95)

they classified as impaired, although the percentages of agreement
were high (78-87%) and kappa’s ranged from 0.49 to 0.68.

6.4.3 Sensitivity and Specificity

Sensitivity and specificity of the three methods are given in Table 3.

6.5 discussion

We investigated three methods for detecting cognitive abnormalities
in PD-patients that predict progression to PDD. We compared the pre-
dictive performance of the PD-MCI criteria, applied either with tradi-
tional normative data (Broeders et al., 2013) or with the ANDI norma-
tive database, to the performance of MNC using the ANDI database.
We found that the number of patients diagnosed with PD-MCI at
baseline differed between these methods. The original PD-MCI cri-
teria as applied by Broeders et al. 15 resulted in 35% of the PD pa-
tients being diagnosed with PD-MCI. Using the same criteria but with
ANDI normative data, this decreased to 27%. The MNC method ap-
plied with ANDI concluded that 26% of the patients were cognitively
abnormal at baseline. In the literature, the frequency with which cog-
nitive impairments in PD patients are reported differs greatly be-
tween studies (probably due to differences in methodology and in
sample characteristics, such as disease duration or severity). Studies
with comparable methods (1.5 SD deviations on at least two out of ten
tests) show that between 21% and 60.5% of PD patients are diagnosed
with PD-MCI (Janvin, Aarsland, Larsen, & Hugdahl, 2003; Hobson &
Meara, 2015; Gasca-Salas et al., 2014; Domellöf, Ekman, Forsgren, &
Elgh, 2015; Santangelo et al., 2015; Galtier, Nieto, Lorenzo, & Barroso,
2016; Pedersen, Larsen, Tysnes, & Alves, 2017). The new multivariate
normative comparison technique yields a number that lies at the low
end of this range.
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In terms of prediction, the MNC method applied with the ANDI
database performed best. Sensitivity and specificity were higher for
this method than for the two PD-MCI criteria methods. This was true
for both the prediction of PDD after three and after five years. The
MNC method applied with ANDI leads to a more sensitive detection
of cognitive pathology that cannot readily be obtained with conven-
tional diagnostic methods, which seems mainly to be due to use of a
multivariate statistical technique and not to use of a large aggregated
database. Between the two PD-MCI criteria methods, there was lit-
tle difference in terms of accuracy. The PD-MCI criteria applied with
ANDI resulted in a slightly lower sensitivity and a slightly higher
specificity compared to the PD-MCI criteria as applied by Broeders et
al. (2013). Just using the ANDI database instead of traditional norms
therefore does not seem to improve prediction by itself.

Figure 2 gives an overview of the sensitivity and specificity found
in previous studies that also used 1.5 SD as a cutoff score. Previous
studies reported a sensitivity of the PD-MCI criteria for PDD rang-
ing from .52 (Pedersen et al., 2017) to .92 (Gasca-Salas et al., 2014)
and specificity ranging from .46 (Galtier et al., 2016) to .94 (Hobson
& Meara, 2015). Therefore, the sensitivity and specificity estimates
obtained with the MNC are at the high end of the spectrum.

In Figure 2, for all three methods a decrease in sensitivity can be
observed between the 3 year and 5 year follow-up. An explanation
would be that with a short period between baseline and PDD diag-
nosis, most patients who developed dementia were already impaired,
leading to a high sensitivity. With more time between baseline and
PDD diagnosis, some patients who developed dementia may have
been unimpaired at baseline, leading to a lower sensitivity. Similarly,
a small increase in specificity between the 3 year and 5 year follow-up
can be observed. This is explained by the time it takes to develop de-
mentia: Patients who are impaired at baseline may still not progress
to dementia in the first few years after baseline, leading to a low speci-
ficity. As more time passes however, patients who were impaired at
baseline will probably develop dementia, leading to an increase in
specificity.

There are several limitations to our study. The number of patients
was not very large (n=123) and loss to follow-up was quite high (21%
at 3 years, and another 25% at 5 years). However, the numbers lost to
follow-up are not different between those cognitively normal or ab-
normal at baseline (in supplement 3 an specification of which patients
were lost to follow up is given).

Subjective complaints were used in PD-MCI criteria andMNC. There-
fore, subjective complaints played a large role in determining the di-
agnoses in this study, while they were established using only two
questions. Possibly, higher specificity and sensitivity would have been
obtained, had we established subjective complaints more formally,
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Figure 6.2: Sensitivity and specificity of the PD-MCI criteria for PDD when using
1.5 SD as a cutoff score in various previous studies (left panels), and
sensitivity and specificity of the three methods investigated in the current
study (right panels). Error bars indicate 95% confidence intervals 43.

for example with a longer, validated questionnaire, ideally including
reports by relatives, caregivers and clinicians. Instead, for patients
without subjective complaints, deviation on at least four neuropsy-
chological tests was used as a criterion for PD-MCI, and a more strict
criterion was used for MNC.

In sum, we conclude that the multivariate normative comparison
method enables a better prediction of who will progress to dementia
than the conventional PD-MCI method.
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7
UNIVAR IATE COMPAR I SONS G IVEN AGGREGATED
NORMAT IVE DATA

7.1 abstract

Objective: Normative comparison is a method to compare an indi-
vidual to a norm group. It is commonly used in neuropsychologi-
cal assessment to determine if a patient’s cognitive capacities deviate
from those of a healthy population. Neuropsychological assessment
often involves multiple testing, which might increase the familywise
error rate (FWER). Recently, several correction methods have been
proposed to reduce the FWER. However these methods require that
multivariate normative data are available, which is often not the case.
We propose to obtain these data by merging the control group data of
existing studies into an aggregated database. In this paper we study
how the correction methods fare given such an aggregated normative
database.

Methods: In a simulation study mimicking the aggregated database
situation, we compared applying no correction, the Bonferroni correc-
tion, a maximum distribution approach and a stepwise approach on
their FWER and their power to detect genuine deviations.

Results: If the aggregated database contained data on all neuropsy-
chological tests, the stepwise approach outperformed the other meth-
ods with respect to the FWER and power. However, if data were miss-
ing, the Bonferroni correction produced the lowest FWER.

Discussion: Overall, the stepwise approach appears to be the most
suitable normative comparison method for use in neuropsychological
assessment. When the norm data contained large amounts of missing
data, the Bonferroni correction proved best. Advice of which method
to use in different situations is provided.

7.2 introduction

Normative comparison is a method of comparing test scores of an
individual to those of a norm group. It is often applied in neuropsy-
chological assessment, with the goal to draw conclusions about an
individual’s cognitive capacities, like memory or attention. If an indi-
vidual deviates sufficiently from the norm group, a group of healthy
individuals, we may speak of ’abnormality’ (Crawford & Howell,

0 Published as: Zadelaar, J. N.*, Agelink van Rentergem, J. A.*, & Huizenga, H. M.
(2017). Univariate comparisons given aggregated normative data. The Clinical Neu-
ropsychologist, 31(6-7), 1155-1172.
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1998; Harvey, 2012; Kendall, Marrs-Garcia, Nath, & Sheldrick, 1999;
Lezak et al., 2012). As such conclusions may affect one’s academic,
professional and personal life, assessment accuracy is vitally impor-
tant. For example, a ’healthy’ individual being falsely diagnosed with
cognitive impairments could result in a waste of time and treatment
resources, as well as personal suffering. Similarly, an undiagnosed
condition may linger or worsen over time, possibly with dire conse-
quences for the individual and her/his surroundings (Harvey, 2012).
As such, the focus of this paper will be on improving statistical meth-
ods for normative comparison, as used in neuropsychological assess-
ment.

In neuropsychological assessment it is common to administer mul-
tiple tests (Harvey, 2012). However, multiple testing is associated with
an increased chance of at least one test falsely indicating abnormality,
that is, with an increased familywise error rate (FWER) (Binder, 2009;
Feise, 2002; Huizenga et al., 2016; Huizenga et al., 2007; Van der Laan,
Dudoit, & Pollard, 2004). In terms of neuropsychological assessment,
this means that administering more tests to an individual increases
the chance of at least one test falsely indicating cognitive abnormal-
ity. Therefore, methods that correct for an increased FWER should be
applied.

Unfortunately, FWER corrections may decrease the ability to de-
tect true deviations (Verhoeven, Simonsen, & McIntyre, 2005). In neu-
ropsychological assessment, this means that a method’s ability to de-
tect real cognitive abnormalities decreases. Still, both a low FWER
and a high power to detect true deviations are important for good as-
sessment accuracy. As such, the goal of this study is to develop a nor-
mative comparison method that successfully reduces the increased
FWER associated with multiple testing while not sacrificing too much
power. Three candidate methods will be examined: the well-known
Bonferroni correction, and two new methods, the maximum distribu-
tion approach, and the stepwise approach.

The Bonferroni correction reduces the increased FWER caused by
multiple testing. This method is often favored for its simplicity (Arm-
strong, 2014; Cao & Zhang, 2014) but is also known for its excessively
low power when tests are correlated (Bland & Altman, 1995; Moran,
2003; Narum, 2006; Verhoeven et al., 2005). As such, this method is
not expected to perform well, but is included nonetheless due to its
simplistic nature.

Next is the maximum distribution approach (or max-approach, for
short), which also reduces FWER. (Huizenga et al., 2016; Nichols &
Holmes, 2002). An advantage this method has over the Bonferroni
correction is that it better retains power when tests are correlated
(Huizenga et al., 2016). This is expected to improve assessment accu-
racy.
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The stepwise approach also reduces FWER, and increases power
even further (Huizenga et al., 2016; Nichols & Holmes, 2002). Notably,
this method is the most demanding computationally. However, it can
be implemented in user-friendly software.

One problem all these methods face though is requiring an appro-
priate norm group. After all, comparing an 80-year old male to a
norm group of 20-year old females may well result in deviation(s)
attributable to demographic differences rather than cognitive abnor-
malities. As such, neuropsychological assessment requires a norm
group that either: 1) consists solely of people from a similar demo-
graphic background as the assessed individual, or 2) is sufficiently
large and varied to correct for such influences (Crawford & How-
ell, 1998). Additionally, the max approach and stepwise approach re-
quire that multiple participants in the normative sample performed
on all tests that were administered to the individual (Huizenga et al.,
2016). Such a normative sample will rarely be available. In order to
provide a solution, we propose to merge already available datasets
– the ’healthy’ control groups of previously conducted studies – to
create one dataset that meets these demands (de Vent et al., 2016;
Agelink van Rentergem et al., 2017; Agelink van Rentergem et al.,
2017). With data-sharing increasing in popularity in the social sci-
ences (Asendorpf et al., 2013; King, 2011; Poline et al., 2012; Vines et
al., 2014), this seems like an opportune solution to the appropriate
norm group problem.

Aggregating studies like this results in a multilevel dataset with
two levels; a participant and a study level, with the former nested
within the latter (Steenbergen & Jones, 2002). This creates two poten-
tial problems. First, the dataset now contains both within-study vari-
ance and between study-variance, as opposed to only within-study
variance. If and how this might affect the assessment accuracy (i.e. the
FWER and power) of the aforementioned methods is yet unclear. Sec-
ond, not every included study contains every test of interest, result-
ing in systematically missing data, which may also affect assessment
accuracy (Dupont & Plummer, 1990; Field, 2009). This is why the ac-
curacy of normative comparison methods when applied to multilevel
structured data with missing data needs to be examined.

Huizenga et al. (2016) investigated whether Bonferroni correction,
max-approach and stepwise approach normative comparison meth-
ods based on resampling adequately corrected for multiple testing if
the normative database was of a non-aggregated nature. In the cur-
rent study, we adapted Huizenga et al.’s max-approach and stepwise
approach to the aggregated database case by including empirical in-
stead of resampled distributions. Both are non-parametric methods,
and therefore require fewer assumptions than those based on theoret-
ical distributions (Nichols & Holmes, 2002). This imposes less restric-
tions on the norm dataset, making the methods more flexible in ap-
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plication. A difference is that the resampling methods of Huizenga et
al. (2016) perform well with small samples sizes, whereas the current
methods based on empirical distributions require a norm database
consisting of many participants, which fortunately is the case in the
suggested aggregated database case. An advantage of the current
methods is that they: 1) can easily be extended to aggregated data
as described above and 2) that they are computationally and theo-
retically simpler than the resampling methods, making them more
user-friendly and easily interpretable.

Uncorrected normative comparison, and normative comparison with
the Bonferroni correction, the max-approach and the stepwise ap-
proach were applied to non-multilevel and multilevel data, with and
without missing data, while varying a number of data parameters,
such as the number of tests and norm group sample size. Accuracy
was estimated by calculating the FWER and power. The uncorrected
method was expected to produce an increased FWER whenever mul-
tiple testing occured. All FWER correction methods were expected
to produce FWERs that: 1) were lower than the FWERs of the uncor-
rected method, and 2) approximated the preset significance threshold
(α = 0.05). Amongst the correction methods, the stepwise approach
was expected to produce the highest power. The Bonferroni correc-
tion was expected to produce the lowest power when tests were cor-
related. The power of the new correction methods was aimed to equal
or exceed that of the Bonferroni correction.

7.3 methods

7.3.1 Normative Comparison Methods

This section explains the aforementioned methods for normative com-
parison on a more detailed level. Normative comparison entails com-
paring a single test score to the distribution of a norm group’s test
scores. In the uncorrected normative comparison, this requires calcu-
lating the proportion of norm group scores on a certain test that are
more extreme than the individual’s score on this same test; this pro-
portion constitutes the p-value of the individual’s test score . If this
p-value falls below the preset significance threshold (p < α), we may
conclude that the individual deviates significantly from the norm
group on the tested cognitive capacity. This is done separately for
each of the M administered tests; when M = 1, the FWER equals the
threshold, FWER = α; if M > 1, the FWER increases, FWER > α (Feise,
2002; Huizenga et al., 2016).

To counter the increased FWER caused by multiple testing, nor-
mative comparison can be augmented with the Bonferroni correc-
tion. This correction entails implementing a new, stricter significance
threshold, which is calculated by dividing the original threshold by
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the number of performed tests: α_Bonferroni= α⁄M. This results in a
more stringent significance threshold as the number of tests increases.
With a more stringent threshold, more extreme scores are required to
produce a significant result, thus reducing the FWER. This correction
is computationally easy and performs well when tests are not corre-
lated amongst each other. Unfortunately, when tests are correlated
it becomes too conservative, as the Bonferroni correction corrects as
if the tests were uncorrelated, resulting in overcorrection (Bland &
Altman, 1995; Holm, 1979; Narum, 2006). This causes an unnecessar-
ily large decrease in both FWER and power, with the latter posing a
problem for this method’s accuracy.

Unlike the Bonferroni correction, the max-approach does not cor-
rect the significance threshold but instead changes the norm group
distribution. That is, an individual’s test scores are not compared to
the distribution of the norm group scores on the corresponding test –
as is done in uncorrected normative comparison – but instead to the
max-distribution. This max-distribution is obtained by taking every
norm group participant’s most extreme score over all M tests, and
combining these scores into one distribution. As a result, the max-
distribution contains only the most extreme norm group scores. If
an individual’s scores deviate significantly even when compared to
these most extreme scores of a norm group, it is more likely to reflect
true deviation. As such, the max-approach reduces FWER (Blakesley
et al., 2009; Huizenga et al., 2016; Nichols & Holmes, 2002; Westfall &
Young, 1993). An advantage this method has over the Bonferroni cor-
rection is that it takes into account test correlations. This prevents the
overcorrection associated with correlated tests, allowing for FWER
correction while not sacrificing too much power, resulting in better
accuracy.

The stepwise approach starts by ordering the individual’s M test
scores and comparing the most extreme score to the max-distribution.
All other scores are compared to the max-distribution over all tests,
not including the ones corresponding to more extreme scores. That is,
the second most extreme score is compared to the max-distribution
over all tests except the one corresponding to the most extreme score,
the third-most extreme score is compared to the max-distribution
over all tests except the tests corresponding to the most and second-
most extreme scores, etc. Like the max-approach, the stepwise ap-
proach reduces FWER by requiring more extreme results to obtain sig-
nificance, while maintaining power by taking into account between-
test correlations. Unlike the max-approach though, it compares less
extreme scores to less extreme distributions, meaning these scores
have a higher chance of reaching significance. This increases the power
even further (Gordon & Salzman, 2008; Huizenga et al., 2016; Westfall
& Young, 1993) .
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Figure 7.1: Example of how the max-distribution is affected by tests having different distributions;
when one test is normally distributed (left), the other is skewed to the right (middle). The
dotted line indicates the critical value at α=0.05.

Both the max-approach and stepwise approach require standard-
ized scores, as using unstandardized scores causes tests with a more
extreme scoring range (e.g. the number of seconds required in a
Stroop task) to dominate the max-distribution, disallowing tests with
a smaller scoring range (e.g. the number of errors in a Stroop task)
from becoming significant.

Additionally, the max-approach and stepwise approach require norm
group scores to be similarly distributed across tests. If not, tests with
skewed distributions may be over- or underrepresented. Figure 1 shows
a test with a normal distribution, a test with a skewed distribution,
and the max-distribution the pair of tests produce. Herein, only scores
from the normally distributed test are represented in the lower tail,
beyond the critical value. As such, on the second (skewed) test, the
assessed individual requires a score excessively extreme compared
to the corresponding test’s norm distribution to be found significant,
thus lowering the power. Should norm group test score distributions
be found to substantially differ, transforming the data to normality is
recommended (de Vent et al., 2016).

In the following paragraph, we outline how we compared these
methods in a simulation study.

7.3.2 Data Simulation

Data were simulated in R (R Core Team, 2015), with each dataset
containing normative data (the norm group) and patient data (the
assessed individual). Normative data were simulated as if the data
from one or more studies (non-multilevel vs. multilevel data), each
containing some or all of the possible tests (no missing data vs. miss-
ing data), were merged. In creating the datasets, the following pa-
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rameters were varied: the number of studies (S), the number of par-
ticipants per study (N), the number of tests (M), the between-test
correlations (BTC), the between-study variance (BSV), and the num-
ber of tests in the patient data that showed deviation. Parameter set-
tings were based on the Advanced Neuropsychological Diagnostics
Infrastructure (ANDI), a recent initiative in neuropsychological diag-
nostics containing healthy participant data of various neuropsycho-
logical tests, as collected from multiple studies (de Vent et al., 2016;
http://www.andi.nl/home).

7.3.2.1 Number of Tests (M): {1, 2, 3, 5, 15, 24, 50}

The number of administered tests was based on the mean number of
tests per study in ANDI, resulting in M = 15; M = 24 was chosen to
represent a larger, yet still realistic number of tests. We chose M =
50, as to investigate the effect an extremely large – albeit unrealistic –
number of tests had on the analyses. Similarly, M = 2, M = 3 and M =
5 were chosen to investigate hypothetical situations with a relatively
small number of tests. Finally, M = 1 served as a baseline, illustrating
each method’s performance when multiple testing did not occur.

7.3.2.2 Number of Studies (S): {1, 2, 5, 20, 40}

The mean number of studies in ANDI to include at least one common
test was 18, and the largest number was 37. Rounding upwards this
became S = 20 and S = 40; S = 1 was included to investigate how each
method performed when applied to non-multilevel data; S = 2 and S
= 5 were added to examine the effect of multilevel data made up of a
small number of studies.

7.3.2.3 Number of Participants per Study (N): {10, 20, 70, 200}

The number of participants greatly varies within the ANDI database,
as data sources vary from large community samples, to small matched
samples in studies about rare diseases. We based our typical sample
size on the latter, and chose N = 70. The minimum and maximum
number of participants per study of N = 10 and N = 200 were based
on the smallest and largest number of participants per study observed
in the ANDI data, omitting the large community samples. Data were
simulated as if all studies had the same number of participants.

7.3.2.4 Between-Test Correlations (BTC): {0, 0.27, 0.5, 0.8}

Between-test correlations describe the correlations between tests from
the same study; BTC = 0.27 was the mean between-test correlation in
ANDI, and BTC = 0.8 was the largest between-test correlation. Given
the large difference between these values – mostly attributable to the
unusually large value of 0.8 – BTC = 0.5 was added as to illustrate
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the effect of high but still common between-test correlations. Addi-
tionally, BTC = 0 was chosen to include a situation with completely
uncorrelated tests.

7.3.2.5 Between-Study Variances (BSV):{0, 0.15, 0.4}

Between-study variance describes the variance in the norm group
dataset attributable to differences between studies, leaving remain-
ing variation attributable to individual differences. These values were
based on the intra-class correlations (ICC) found in ANDI; 0.15 was
the mean ICC in ANDI, and 0.4 the largest ICC found in this dataset.
From these correlations, the between-study variances could be com-
puted through the formula: BSV=ICC*σ2, wherein σ2 equals the total
variance of the norm group dataset (Tabachnick & Fidell, 2007). In
each dataset, σ2 was arbitrarily set to 1, resulting in BSV = 0.15 and
BSV = 0.4. BSV = 0 was included to examine a situation wherein all
studies involved were completely equivalent.

7.3.2.6 Missing Data: {0%, 50%}

The amount of missing data was set at either 0% (no missing data)
or 50% (half of the data were missing). The latter was deemed a suf-
ficiently large percentage to demonstrate the effects of missing data,
and was computed by removing scores after data simulation. This
was done by removing the first half of the tests (test 1 to M/2) for the
first half of the studies (study 1 to S/2), and removing the second half
of the tests (test M/2 + 1 to M) from the second half of the studies
(study S/2 + 1 to S), as illustrated in Figure 2.

7.3.2.7 Patient Deviation: {1; 5}

The number of tests a patient could deviate on was varied to illustrate
the expected increase in power of the stepwise approach over the
max-approach in situations with multiple deviating tests. The patient
could deviate on either the first, or on the first five tests.

7.3.2.8 Norm Data Simulation

The norm group data were simulated as if test scores had already
been corrected for demographic influences, meaning they had a mean
of zero (de Vent et al., 2016). Thus, the scores of the norm group
data only consisted of a within-study term epsilon (ε) and a between-
study term denoted by nu (ν). Epsilons differed for each participant
and each test. Nu’s differed for each study and each test. By adding
these two elements, the test scores were computed: score = ε + ν.
Epsilons were drawn from a multivariate normal distribution with
means of zero and a covariance matrix with variances of 1-BSV and
covariances calculated with the BTC values. Nu’s were drawn from a
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Figure 7.2: Missing data pattern with 50% of the data missing. Grey areas indicate
non-missing values, white areas indicate missing values.

multivariate normal distribution with means of zero and a covariance
matrix with variances of BSV and covariances of 0. Note that because
a non-multilevel dataset consists of only one study (S = 1), it should
have no between-study variance (BSV = 0), causing the nu’s to equal
zero, meaning non-multilevel scores consisted solely of epsilons.

7.3.2.9 Patient Data Simulation

Patient data had the same format as the norm dataset, but for N =
1. Patients were either healthy (with scores equaling the mean used
in simulating the norm data) or deviant (two standard deviations
below the mean used to simulate the normative data, either on the
first test or on the first five tests). The inclusion of both healthy and
deviant individuals enabled estimation of both the FWER and power
of methods. Standard deviations were computed by taking the square
root of the respective diagonal element of the summed within-study
and between-study covariance matrices. Both the norm data scores
and the patient data scores were standardized, as required for the
max-approach and stepwise approach.

A total of 1000 datasets (each consisting of one norm dataset and
one patient dataset) were simulated for each type of data, enabling
accurate estimation of FWER and power.

7.3.3 Data Analysis

For all methods, for each type of norm dataset, the FWER and power
were estimated. The FWER was defined as the proportion of healthy
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patient datasets that were incorrectly identified as deviant – meaning
that significant deviation on at least one test (at least one false posi-
tive result) was found (Huizenga et al., 2016). The significance thresh-
old was set at α = 0.05. The power was defined as the proportion
of deviant patient datasets where deviation was correctly identified
– meaning that deviation was found on the first test (Parikh, Mathai,
Parikh, Sekhar, & Thomas, 2008). This definition of power was main-
tained regardless of the number of deviating tests.

7.4 results

Results were plotted for the default settings of 70 participants per
study, from 20 studies, with 15 tests, with a between-tests correlation
of 0.27, and a between-study variance of 0.15 (N = 70; S = 20; M = 15;
BTC = 0.27; BSV = 0.15), unless otherwise noted. These settings were
chosen to be typical for the ANDI database. Unless explicitly stated
otherwise, no norm data were missing.

7.4.1 Familywise Error Rate

Our first question was whether multiple normative comparisons us-
ing a multilevel structured norm group required FWER correction.
Figure 3 shows the FWER results for the typical ANDI settings. For
uncorrected tests, the FWER results were well above 0.05, at approx-
imately 0.40, confirming the necessity of using correction methods.
All three correction methods kept the FWER at 0.05, suggesting ade-
quate correction. Because the FWER of the uncorrected method was
so high, this method will not be shown in later figures.

Second, FWER was plotted as a function of between-test correlation
(BTC) and between-study variance (BSV), see Figure 4. This revealed
that larger between-test correlations resulted in a minor decrease in
the Bonferroni correction’s FWER. Between-test correlations had no
effect on FWER of the max-approach and stepwise approach. The
between-study variance had a small effect on the FWER, where a
high between-study variance increased the FWER to slightly above
0.05 across methods. The uncorrected method produced FWER val-
ues between 0.157 (BTC = 0.8; BSV = 0) and 0.567 (BTC = 0; BSV =
0.15).

Third, we looked at the influence of sample size on FWER. Sam-
ple size could either be changed by changing the number of studies
(S), or by changing the number of participants per study (N). In Fig-
ure 5, different combinations of these two factors are shown. With
a high sample size all three methods produced FWERs of 0.05, but
increased FWER values were found as the sample size decreased;
herein, decreasing the number of studies had a more pronounced ef-
fect than decreasing the number of participants per study. Noticeably,
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Figure 7.3: Familywise Error Rate on the y-axis, and type of correction on the x-axis.
Plotted for the ANDI-representative settings (N = 70; S = 20; M = 15;
BTC = 0.27; BSV = 0.15), without missing data. Error bars indicate 95%
binomial confidence intervals. The dotted line indicates the significance
threshold (α=0.05).
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Figure 7.4: Familywise Error Rate on the y-axis, and type of correction on the x-axis. Plotted for
various combinations of correlations between tests and various variances between stud-
ies (other parameters fixed at ANDI-representative settings: N = 70; S = 20; M = 15),
without missing data. Error bars indicate 95% binomial confidence intervals. The dotted
lines indicate the significance threshold (α=0.05). The graph marked by ’Typical’ denotes
that the between-test correlation and between-study variance corresponded to ANDI-
representative settings (BTC = 0.27; BSV = 0.15).
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the Bonferroni correction produced a higher FWER than the other
two methods when the number of participants was low. The uncor-
rected method showed FWER values between 0.396 (S=40; N = 200)
and 0.636 (S = 2; N = 10).

Fourth, we looked at the influence of the number of tests (M). The
FWER of all correction methods for several numbers of test was plot-
ted in Figure 6. For the Bonferroni correction, the FWER became ele-
vated for 24 tests or more. The max-approach and stepwise approach
showed no increased FWER. As expected, the uncorrected method
showed a strong FWER increase as a result of multiple testing, with
FWER = 0.055 (M = 1) to FWER = 0.719 (M = 50).

Fifth, we looked at the influence of missing data. Figure 7 displays
the FWER of the three correction methods with either complete data
or 50% of the data missing. Both the max-approach and the stepwise
approach showed an increased FWER when missing data were intro-
duced. The Bonferroni correction showed a negligibly small FWER in-
crease. The uncorrected method appeared almost unaffected by miss-
ing data, with FWER = 0.42 (complete data) and FWER = 0.413 (miss-
ing data).

To summarize, FWER analysis revealed that the uncorrected method
consistently produced FWER values above 0.05. This confirmed that
performing multiple normative comparisons using multilevel data
requires FWER correction. All correction methods produced better
FWER values across a variety of situations. Between-test correlations
slightly affected the FWER of the Bonferroni method, but not the
FWER of the other correction methods. Between-study variance did
affect FWER, with higher variances producing an increased FWER
across correction methods, though only with relatively large between-
study variances – which would be rare in clinical practice – and even
then the increase was very mild. The number of tests only affected the
Bonferroni correction, causing a small FWER increase as the number
of tests increased. All correction methods showed an elevated FWER
when the norm group was small, with the Bonferroni correction suf-
fering most, especially when the number of participants was low.
Missing data caused an increased FWER in the max-approach and
stepwise approach alone. In short, the max-approach and stepwise
approach outperformed the Bonferroni correction, especially when
the norm data contained a low number of studies, or when the num-
ber of tests was high. Only when the norm data contained missing
values, did the Bonferroni correction outperform the other correction
methods.

7.4.2 Power

First, we looked at the power when the patient data deviated on the
first test only, using the ANDI-representative settings (N = 70; S =
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Figure 7.5: Familywise Error Rate on the y-axis, and type of correction on the x-axis. Plotted for
various combinations of number of studies and number of participants per study (other
parameters fixed at ANDI-representative settings: M = 15; BTC = 0.27; BSV = 0.15), with-
out missing data. Error bars indicate 95% binomial confidence intervals. The dotted lines
indicate the significance threshold (α=0.05). The graph marked by ’Typical’ denotes that
the number of studies and participants per study corresponded to ANDI-representative
settings (S = 20; N = 70).
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Figure 7.6: Familywise Error Rate on the y-axis, and number of tests on the x-axis. Plotted
for various numbers of tests (other parameters fixed at ANDI-representative
settings: N = 70; S = 20; BTC = 0.27; BSV = 0.15), without missing data. Error
bars indicate 95% binomial confidence intervals. The dotted line indicates the
significance threshold (α=0.05).

Figure 7.7: Familywise Error Rate on the y-axis, and type of correction on the x-axis.
Plotted for both complete data (left) and data with half of the values removed
(right), only for the ANDI-representative settings (N = 70; S = 20; M = 15; BTC
= 0.27; BSV = 0.15). Error bars indicate 95% binomial confidence intervals. The
dotted line indicates the significance threshold (α=0.05).
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Figure 7.8: Power on the y-axis, and type of correction on the x-axis. Plotted for the ANDI-
representative setting (N = 70; S = 20; M =15; BTC = 0.27; BSV = 0.15), without
missing data. Error bars indicate 95% binomial confidence intervals.

20; M = 15; BTC = 0.27; BSV = 0.15). The power of the three cor-
rection methods and uncorrected normative comparison was plotted
in Figure 8. The uncorrected method had the highest power. The
three FWER correction methods produced almost identical results,
and thus were concluded not to differ amongst each other.

Next, we looked at the power when the patient data deviated on
the first five tests. Recall that power calculations only identified devi-
ation on the first test. Figure 9 displays the power of all four methods
while varying the correlations between tests. The uncorrected method
still produced the highest power. Out of the correction methods, the
stepwise approach had the highest power – even approximating the
power of the uncorrected method, especially at low between-test cor-
relations. The max-approach behaved in an opposite manner, show-
ing increased power as between-test correlations increased, though
never outperforming the stepwise approach. The Bonferroni method
showed a consistently low power across between-test correlations.

To summarize, the uncorrected method produced the highest power.
Unfortunately, this held little relevance as this method was already
shown to fail in terms of FWER criteria. Out of the correction meth-
ods, the stepwise approach excelled when the assessed individual
deviated on multiple tests. This agrees with the idea that both the
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Figure 7.9: Power on the y-axis, and type of correction on the x-axis. Five deviations were
simulated. Power was estimated as proportion of significant deviations found
on the first test. Plotted for various between-tests correlations (other parameters
fixed at ANDI-representative settings: N = 70; S = 20; M = 15; BSV = 0.15),
without missing data. Error bars indicate 95% binomial confidence intervals.

Bonferroni and the max-approach are unfairly restrictive, especially
for all except the most deviating test scores. Also, in neuropsycholog-
ical assessment deviation on multiple tests is to be expected, as cogni-
tive functions are correlated. As such, this advantage of the stepwise
approach makes it very useful for clinical practice.

Other combinations of data simulation parameters that were varied
are also available; all simulation results are provided online.

7.5 discussion

This study examined the assessment accuracy of several normative
comparison methods when the norm group data were obtained from
an aggregated dataset. The goal was to determine which method
would be most suitable for use in neuropsychological assessment.
Uncorrected normative comparison, and three FWER correction nor-
mative comparison methods – the Bonferroni correction, the max-
approach, and the stepwise approach – were tested. Good assess-
ment accuracy was defined as a familywise error rate (FWER) not
exceeding the preset significance threshold. Additionally, the power
was aimed to be as high as possible.

The uncorrected method consistently produced too high FWER val-
ues, meaning it too often untruthfully indicated that the assessed
individual deviated from the norm group. The correction methods
were shown to reduce the FWER. Several data parameters were varied
to examine which correction method performed best under different
circumstances. When the norm group contained many missing data,
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the Bonferroni correction controlled the FWER better than the max-
approach and stepwise approach. Without missing data the stepwise
approach performed preferably, as it had equivalent or better control
over the FWER, and an equivalent or higher power across a variety
of situations. This was especially pronounced in situations with a
smaller number of studies or participants, situations with a higher
number of tests, and when between-test correlations were low.

Several points require discussion. First, the max-approach and step-
wise approach performed well as long as the norm group contained a
sufficient amount of studies, while the Bonferroni correction suffered
when either the number of studies or the number of participants was
reduced. This difference can be explained by the fact that reducing
norm group size results in fewer data points to make up the norm
group distribution. Especially the tails of the distribution are affected
by this, as they contain few data points to begin with. This affects the
Bonferroni correction most because it implements a lower significance
threshold for each test, and a lower threshold directs the comparison
towards the most extreme part of the distribution (essentially the tail
of the tail), which contains even fewer scores, and is thus even more
affected by decreased sample size.

Second, introducing missing data to the norm group dataset led
to an increased FWER in the max-approach and stepwise approach,
but did not substantially affect the Bonferroni correction. This can
be explained by the former two methods constructing norm group
distributions by selecting extreme scores across tests; when half of
the tests are missing these distributions may become too narrow (i.e.
not critical enough). The Bonferroni correction isn’t affected as it does
not use the extreme values over all tests to make a new distribution
to which the patient scores are compared.

Third, the stepwise approach produced a much higher power than
the other correction methods when multiple tests deviated, especially
when between-test correlations were low. This may be explained by
the stepwise approach computing different distributions for each test
score. More extreme scores are compared to more extreme distribu-
tions – distributions made up of the most extreme norm group scores.
When tests are highly correlated, extreme scores on one test come
with extreme scores on other tests, meaning there are more extreme
scores in total. Thus the distributions become more critical, making it
harder to detect deviation, thus reducing power.

Fourth, despite the stepwise approach yielding higher power than
Bonferroni correction or max-approach, it occasionally produced a
low power, which may spark reluctance to use it in clinical practice.
However, the stepwise approach still outperformed the Bonferroni
correction, and while the uncorrected method consistently produced
the highest power, it also produced a highly increased FWER. It is
the overall accuracy, the combination of a low FWER and relatively
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high power, that makes the stepwise approach most suitable for prac-
tical application. When high(er) power is preferred, we recommend a
more liberal threshold (e.g. α = 0.20 instead of α = 0.05). This has the
advantage of the true FWER being known (i.e. when the significance
threshold of the stepwise approach is set to α = 0.20, the resulting
FWER will approximate 0.20), whereas using the uncorrected com-
parisons will produce an FWER increase of an unknown extent.

Fifth, norm data were simulated so that the number of participants
was equal across studies, which is unlikely to occur in real aggregated
data. A post-hoc simulation study with unequal sample sizes (using
the default settings) showed similar patterns in terms of FWER results
as it did with equal sample sizes.

Sixth, due to this being a simulation study, generalizability of re-
sults may be called into question. However, data simulation allowed
for the examination of each method’s performance under many differ-
ent circumstances, thus boosting generalizability. More importantly,
simulation parameters were based on real data to enhance general-
izability, leading us to believe that these results are representative of
real life situations.

Finally, it must be stressed that none of the discussed statistical
methods are meant to be the sole basis of diagnosis, with contextual
information and the assessors’ professional opinion playing an im-
portant role – both in interpreting analysis results and in translating
them into a meaningful judgement and effective treatment.

7.5.0.1 Practical Advice

When the norm data contain no missing data, the stepwise approach
appears to be the most suitable method for normative comparison
with an aggregated norm group; it best corrects the increased FWER
associated with multiple testing, with FWER least affected by the
properties of the norm group. Moreover, it produces a relatively high
power when the assessed individual deviates on multiple tests. Based
on this, we recommend the stepwise approach as the default method
for neuropsychological assessment with an aggregated normative database.
However, when the norm data contains (large portions of) missing
data – for example, when several of the administered tests are rela-
tively uncommon – the Bonferroni corrections should be preferred.

Also, when the norm group sample size is small, neither correc-
tion method performs well. In such instances, we recommend the
resampling based normative comparison methods from Huizenga et
al., (2016). These methods were made specifically with small norm
groups in mind, and proved to have good assessment accuracy with
small sample sizes (Huizenga et al., 2016; Li & Dye, 2013; Troendle,
1995). However, note that these methods have not yet been tested for
multilevel data or norm groups with missing data.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 136PDF page: 136PDF page: 136PDF page: 136

128 univariate comparisons given aggregated normative data

The uncorrected method, the Bonferroni correction, the max-approach
and stepwise approach have been implemented in a freely available
online app (see: https://joost.shinyapps.io/EmpiricalNormComp/).

7.5.0.2 Final Comments

FWER corrections are needed in neuropsychological assessment when
performing more than one normative comparison. In this simulation
study, we have shown that correcting multiple comparisons using the
stepwise approach can be a useful alternative to Bonferroni correc-
tions when using aggregated norm data. We hope that this leads to a
broader adoption of correction methods, as it is important to reduce
the number of false positives in clinical practice, while remaining sen-
sitive to true deviations.
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8
STAT I ST ICAL ADVANCES IN CL IN ICAL
NEUROPSYCHOLOGY

8.1 summary

The goal of this thesis was to improve the reliability of neuropsycho-
logical assessment, specifically by improving the normative compari-
son procedure. The first goal was to provide multivariate normative
comparisons, which test the patient’s whole profile of scores. The sec-
ond goal was to provide normative comparisons that are corrected
for age, sex, and level of education. These goals had two require-
ments. First, a normative database had to be established with many,
demographically diverse, healthy participants. Second, a statistical
framework had to be developed that allows for demographically cor-
rected multivariate normative comparisons with this new normative
database. The statistical framework was the focus of this thesis.

In chapter two, we described how an aggregate normative database
can be constructed by combining the data from healthy people from
multiple studies. These people may have participated as a control
group in a clinical study, or may have participated in a large com-
munity study. By combining many such groups of people, data from
many different neuropsychological tests can be gathered. All proce-
dures were standardized across tests. This involved two procedures
for data cleaning. First, values were discarded that were outside a pre-
defined range of allowable scores, which was set beforehand on the
basis of clinical expertise. Second, values were discarded that were
highly unlikely given participants’ age, sex, and level of education.
To select which demographic variables to use in demographic correc-
tions, the Akaike Information Criterion was used. To be able to use
parametric statistics, such as parametric normative comparisons, cor-
rected scores would ideally be normally distributed, or transformed
to be normally distributed. To select a power transformation to achieve
normality, the Box-Cox procedure was used (Box & Cox, 1964). Last,
the contents of the ANDI database were described in this chapter.

In chapter three, we described how multivariate normative com-
parisons can be made using an aggregate database. This required a
model that consisted of three parts. First, to include demographic
corrections for age, sex, and level of education, a regression model
was required to estimate the regression coefficients for these three
demographic variables. Second, there may be differences between
studies in the scores that healthy participants obtain, for example
due to differences in sample selection or test administration between
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studies. Therefore, a multilevel model was required, to model these
differences between studies. Third, multivariate normative compar-
isons take into account the relations between scores on different tests.
Therefore, the covariance between scores needed to be estimated, and
a multivariate model was required. To combine these parts, a multi-
variate multilevel regression model was formulated. This multivariate
multilevel regression has an added advantage, in that it can be fitted
with missing data in the test variables. Because of the nature of an ag-
gregate database, large amounts of missing data are to be expected,
as tests that were not administered in a particular study have miss-
ing values for all participants in that study. With this model, all the
components that are required in the multivariate normative compar-
isons can be estimated: demographically corrected means, variances,
and covariances. In a simulation study, performance of the multivari-
ate normative comparisons procedure was evaluated with varying
amounts of missing data and between study variance. It was shown
that although the model can be fitted using missing data, it cannot if
there is missing overlap between tests. This issue was addressed in
chapter four.

In chapter four, we described how the model from chapter three can
be extended to accommodate missing overlap between tests. There
is missing overlap between two tests, if the combination of these
two tests has not been administered in any of the studies that are
included in the database. This makes the covariance between these
two tests impossible to estimate directly. In this chapter, two meth-
ods that can solve this problem are identified. The first is multiple
imputation, where values are imputed for every missing value. From
these imputed values, the covariance can be estimated in a straight-
forward manner. The second is a factor model approach, where a
model for the covariance structure is estimated. This model assumes
that the covariance between tests can be described by the dependence
of these tests on the same latent variable. In a simulation study, the
two methods are compared. The multiple imputation approach keeps
the number of false positives under control, but due to underestima-
tion of the covariance between tests, it is less sensitive in detecting
impairment than the factor model approach. A precondition for the
factor model approach is the appropriateness of the factor model for
the data. If the factor model is not appropriate, the number of false
positives increases. Therefore, a factor model for neuropsychological
tests needs to be established before this model can be applied. This
issue was addressed in chapter five.

In chapter five, the fit of different factor models for neuropsycho-
logical tests was compared in two studies. In the first study, a meta-
analysis, correlation matrices for neuropsychological tests were re-
quested from published studies. The correlation of test scores with de-
mographic variables was partialed out from the correlation between
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tests. Subsequently, the correlation matrices were pooled into a sin-
gle correlation matrix, to which factor models could be fitted. In the
second study, factor models were fitted to demographically corrected
data from the ANDI database. In both studies, model comparisons
showed that the Cattell-Horn-Carroll model as modified by Jewsbury
et al. (2016) fitted best. This model was originally developed in in-
telligence research, and divides cognitive functioning as measured
by neuropsychological tests in domains of "Acquired knowledge or
crystallized ability", "Processing speed", "Long-term memory encod-
ing and retrieval", "Working memory", and "Word fluency". This is in
contrast to other models that divide cognitive functioning in domains
of "Attention", "Executive functioning", and "Memory". Because the
Cattell-Horn-Carroll model seems to fit data from healthy people
well, this model can be used in ANDI to apply the methods devel-
oped in chapter four.

In chapter six, the methods developed in this thesis were put to an
empirical test. Specifically, the ANDI database and multivariate nor-
mative comparisons were used in a re-analysis of longitudinal data
from a study on Parkinson’s disease and Parkinson’s disease demen-
tia (Broeders et al., 2013). These data had been analyzed before using
conventional (univariate) criteria for Mild Cognitive Impairment in
Parkinson’s disease (PD-MCI; Litvan et al., 2012). The goal of the pre-
vious study had been to see whether those who fit the PD-MCI cri-
teria at the first measurement occasion would progress to dementia
at a later measurement occasion. In this chapter, the results from this
study were compared to results obtained with the ANDI database.
First, using the univariate PD-MCI criteria with the ANDI database
showed more cautious results than the earlier study: Fewer patients
were classified as cognitively impaired. This was the case for both pa-
tients that later did, and did not develop dementia. Second, applica-
tion of the ANDI database with multivariate normative comparisons
was shown to provide better predictions than using the conventional
PD-MCI criteria: They were both more sensitive and specific in pre-
dicting who would develop dementia. This provides evidence that the
methods described here are indeed useful in improving neuropsycho-
logical assessment.

In chapter seven, we returned to the issue of using univariate nor-
mative comparisons in clinical neuropsychology. If no correction is
used, and many univariate normative comparisons are performed for
many different test variables, the number of times that cognition is
judged to be impaired in healthy people is increased, a so-called in-
creased familywise error rate. This may have contributed to the lower
specificity for the PD-MCI criteria in chapter six. To correct for this
increased familywise error rate, correction methods have been devel-
oped. A correction method that is frequently used in science, but not
so much in clinical practice, is the Bonferroni correction. This correc-
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tion decreases false positives, but can hurt the chances of detecting im-
pairments in those who are truly impaired. In this study, more sophis-
ticated correction methods were discussed and compared in a simula-
tion study, specifically for the situation where patients are compared
to an aggregate database. A new stepwise method performed better
than the Bonferroni correction in detecting impairments in many set-
tings, but did show an increase in false positives if many data were
missing. Therefore, it is too early to fully endorse either method.

This thesis was accompanied by the establishment of the ANDI
database and website. In this project, 84 generous contributions from
research groups across the Netherlands and Belgium yielded data
from 27,000 participants. In the ANDI project, the methods described
in chapter two and three have been implemented. The website will be
extended using the method from chapter four, with the model from
chapter five.

8.2 potential improvements

The models in this dissertation were focused on multivariate distribu-
tions, and multilevel and factor model approaches. These approaches
have had a number of advantages, in terms of the estimability of pa-
rameters in the light of many missing data points and differences be-
tween studies. However, these approaches brought with them a num-
ber of assumptions, in terms of linearity, equality of variances across
different levels of demographic variables, and normality of the data.
Voncken, Albers, & Timmerman (2017) proposed a powerful method
for norming data that does not make these assumptions. However,
their method is not multivariate, is not yet tested for very high per-
centages of missing values, and has not yet been developed for ag-
gregate databases. One future direction could be to borrow the best
from both methods, to arrive at multivariate normative comparisons
while relaxing some of the assumptions where necessary.

The multivariate normative comparison procedure provides a sin-
gle dichotomization into impaired and not impaired for a whole pro-
file of test scores. This information is relevant in many clinical and
research settings. However, in other settings, more detailed informa-
tion on the nature of the deviation is needed, or a measure of the
severity of impairment is needed. An option would be to study each
of the test scores separately using univariate normative comparisons.
Therefore, one approach would be to further improve the univariate
approach from chapter seven, in order to make sure that it keeps the
number of false positives low with missing normative data. Another
approach would be to make multiple multivariate normative compar-
isons for parts of the profile, for example only comparing tests on
two domains multivariately, ignoring the remainder of scores, and
then comparing tests on two other domains multivariately. Whether
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this increases sensitivity to certain impairments, and how to control
for false positives in this scenario are topics for future research.

The question remains how rare a patient’s score or score profile
has to be in healthy people before the patient’s cognitive functioning
can be classified as impaired. In this thesis, common thresholds were
used, such as using the criterion that if a score this low is obtained
by 5% of healthy people or less, we consider cognitive functioning
to be impaired. How this threshold is set determines both sensitiv-
ity to real cognitive impairments, and the chance of finding a false
positive. Therefore, it is important to use a threshold that maximizes
performance in both respects. This 5% is therefore not set in stone,
and should be considered a starting point. One reason that the best
possible threshold has not been determined before, is that it is highly
dependent on the context of the assessment. In some contexts, the
base rate, i.e., the number of people with real cognitive impairments,
will be higher than in other contexts. In a context with a high base
rate, say at the intake of a memory clinic where patients with sub-
jective complaints are invited, 5% may be too strict a threshold for
impairment, and may result in many cognitive impairments being
missed. In a context with a low base rate, say a screening of patients
who have fallen recently, 5% may be too lenient a threshold for im-
pairment, and may result in many false positives. Therefore, a fruitful
extension of the present thesis would be to extend the multivariate
normative comparisons method using Bayes’ rule (Gavett, 2015) to
take into account differences in base rates between different contexts.

8.3 extensions of the method

This thesis has focused on cross-sectional data from healthy people
that completed a test battery for the first time. This makes this type
of database useful to clinical neuropsychologists interested in setting
diagnoses, and characterizing deficits in patients who complete a test
battery for the first time. However, in for example treatment settings,
clinical neuropsychologists also evaluate a patient’s test scores at mul-
tiple occasions. To evaluate whether a patient’s progression over time
is different than observed in healthy people, an aggregate database of
longitudinal data would ideally be built as well. There are multiple
ways to envision such a longitudinal database.

One option would be to focus on a single retest session, for exam-
ple after three months, for which normative data could be collected.
Then, the decrease or increase of scores that patients show from base-
line to this three-month follow-up can be compared to that of healthy
people. This option could be difficult to implement if there are few
studies that have retested healthy people after three months. Also,
the application of this database would be limited to patients who are
retested after three months. An advantage would be that the statis-
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tical framework of normative comparisons in this setting is already
available in the form of the Reliable Change Index (Jacobson & Truax,
1991), which could also be extended to a multivariate version.

A second option would be to collect data from healthy people who
were tested at varying time intervals. This would allow for the in-
clusion of more datasets, and could be more widely applicable be-
cause patients are tested at varying time intervals as well. However,
the statistics for the modeling of changes over time would be more
involved. From the longitudinal data, progressions of scores over
time, i.e., the slope of the regression line, could be estimated for ev-
ery healthy person. The patient’s slope could then be compared to
healthy participants’ slopes in the by now familiar normative com-
parison procedures. Slopes of multiple test variables could then be
analyzed using multivariate normative comparisons in the same way.
One issue would be that time is not the only factor influencing dif-
ferences between scores between measurement occasions, as practice
effects from the measurement itself may improve scores over time
(McCaffrey & Westervelt, 1995). This makes it difficult to pool data
from a study with a measurement after three months, and a study
with measurements every week.

Apart from longitudinal data, data from samples other than healthy
people could be useful to clinical practice. This thesis was funda-
mentally focused on normative comparisons, that is, comparing a
patient’s scores to scores obtained by healthy people. An alternative
would be to compare a patient’s scores not only to scores obtained by
healthy people, but also to scores obtained by clinical groups. With
such data, a different statistical approach would be needed, to classify
whether a patient’s cognitive functioning is more similar to that of
healthy people, or more similar to that of a particular clinical group.
This would require that large samples of participants are available
from different clinical groups, to best be able to make this distinc-
tion. We can be sure that studies are available amenable to the goal
of pooling clinical groups, as in clinical studies often extensive test
batteries are administered. Therefore, it would be worthwhile to add
a database of patients from different studies to the existing database
of healthy participants.

8.4 potential applications

The focus of the project was on establishing a Dutch and Belgian
normative database of tests used in clinical neuropsychology to diag-
nose cognitive impairment in adults. However, every step is generally
applicable to normative comparisons in other domains. This is true
for the pre-processing steps in chapter two, and is also true for the
models of chapters three and four. It should be noted that the code
required to perform these methods is available online, as is the code
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to run the website on which the normative comparisons can be made.
Because of the generality of the methods proposed here, there are
many applications that could follow naturally from this thesis.

First, the methods are not specific to Dutch and Belgian data. There-
fore, this project can be replicated in other countries and/or regions.
The availability of clinical neuropsychology norm data was already
quite good in the Netherlands and Belgium, as test publishers pro-
vide high quality norms for this language area. Therefore, an aggre-
gate database of normative data would be even more valuable in
countries where there are fewer high quality norms available. One
suggestion would be to keep the regions small for a single database:
If studies from too many countries are aggregated, the variance be-
tween studies becomes large due to differences between countries in
language, culture, and test versions.

Second, the methods are not specific to adults. Therefore, this project
can be replicated for developmental clinical neuropsychology data as
well. In fact, several donations to the ANDI database have already
been made for children’s data. It is not advisable to create a single
database for children and adults, as the tests that are typically used
are different between children and adults. Adding data from these
age groups together would create a problem of missing overlap that
is more severe than what was discussed in this thesis. Therefore, a
new aggregate database of normative data for children would be ad-
vised.

Third, the methods developed here are not limited to applications
in clinical neuropsychology. Clinical neuropsychology has the advan-
tage that tests are highly standardized in the way they are adminis-
tered, and in the way the outcomes of these tests are scored. This en-
ables the combination of data across different sources. If there would
be more flexibility in the administration procedure, this would con-
tribute to more variance between studies. However, there are many
fields within and outside of psychology where standardized tests and
standardized outcomes are common, for example in clinical psychol-
ogy (Clark & Watson, 1995), personnel psychology (Bartram, 2008),
and educational science (Delandshere, 2001). For each of these fields,
a normative database of test scores could be established, so multivari-
ate normative comparisons can be used to classify whether a single
case is typical, or different from the norm.

Fourth, although so far the discussion has only been about test
scores, normative comparisons can be extended outside the domain
of testing. Biomarkers would be one domain where an aggregate nor-
mative database would be useful. With such a normative database, for
example a patient’s blood pressure and heart rate variability could be
compared to those of healthy people (Morrison & Morris, 1959; Tsuji
et al., 1996). This could also be done in a multivariate normative com-
parison, taking the correlation between blood pressure and heart rate
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variability into account. Other biomarkers that would be amenable
to normative comparisons could be brain indices (Dubois & Adolphs,
2016), obtained using fMRI, EEG or PET. Brain indices produce large
amounts of data from different locations in the brain, which increases
the chance of a false positive if every location is considered separately.
Therefore, multivariate normative comparisons would be useful in
this field as well.

8.5 themes

With this thesis and the broader ANDI project, we wanted to show
that an aggregate normative database can provide clinical neuropsy-
chologists with the data they need to apply statistically advanced
techniques, which can improve diagnostics in clinical neuropsychol-
ogy practice. Three themes that pervade this thesis are treated next.

The first theme is data sharing. The establishment of aggregate nor-
mative databases is only possible if there is broad willingness in the
research community to share data. The ANDI project is very fortunate
that there is a culture of cooperation in the clinical neuropsychology
community in the Netherlands and Belgium. We hope that this will
also be the case for future data aggregation ventures.

The second theme is integration of substantive and methodological
fields within psychology. It generally takes a long time before newly
developed statistical methods become available to other researchers,
and before those methods that are available in research become avail-
able in clinical practice. With the advent of the free R statistics soft-
ware with its productive community of developers, new statistical
tools become freely available every day. However, the data and the
know-how to apply these newly developed tools are also necessary.
With the ANDI project, we hope to have crossed the divide between
methodological development and substantive questions by develop-
ing a user-friendly website with which clinicians and researchers can
analyze their own patient data.

The third and last theme is valorization. In recent years, there has
been a call for science to become more useful to society at large. Sci-
entists are asked to come up with studies that result in products that
can be used, thereby providing value outside science. One criticism of
this call for so-called valorization is that it could detract from research
for which it is not immediately clear what the value is to society, but
which may be valuable in its own right, or which may prove valu-
able in the long run. In the ANDI project, the data were not collected
with valorization specifically in mind. However, they were re-used to
create a product that is immediately useful to clinicians and patients.
This seems like an ideal example of valorization.
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8.6 conclusion

Neuropsychological assessment is an important part of clinical care
and clinical research. When normative comparisons are reliable, we
can use neuropsychological assessments to discover impairments in
a patient’s cognitive functioning, and to discover cognitive benefits
and side effects of new treatments. Therefore, it is important to make
sure that normative comparisons are as reliable as possible. In this
thesis and the ANDI project, we improved normative comparisons,
by developing a normative database and by developing a statistical
framework to make normative comparisons with this database. These
developments made multivariate normative comparisons, and more
accurate demographic corrections, available to clinical neuropsychol-
ogists in practice and research.
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9
APPENDICES ACCOMPANY ING CHAPTER 5 :
COGNIT IVE DOMAINS IN NEUROPSYCHOLOGY:
SUPPORT FOR THE CATTELL -HORN-CARROLL
MODEL IN TWO RESEARCH SYNTHESES

9.1 search terms used in psycinfo

#1 Factor model

factor analysis/ OR factor structure/ OR structural equation model-
ing/ OR (factor* model* OR factor* analy* OR structural equation*
model* OR EFA OR CFA OR SEM OR factor* structur* OR confirma-
tory factor* OR exploratory factor*).ti,ab,id.

#2 Specific neuropsychological tests

stroop color word test/ OR stroop effect/ ORwechsler memory scale/
OR wisconsin card sorting test/ OR verbal learn*.tm. OR ((clock*
AND (test* OR draw*)) OR (tower AND (test* OR london OR hanoi))
OR benton OR vis* retent* OR BVRT OR fac* recogni* OR BFRT OR
judg* of line* OR line orientation OR JLO OR BJLO OR JOLO OR
block design OR blockdesign OR Kohs OR boston naming OR BNT
OR brixton OR spatial anticipation OR BSAT OR card sort* task* OR
card sort* test* OR cardsort* test* OR WCST OR MWCST OR com-
plex figur* OR rcf* OR rocf* OR rey-osterrieth OR digit* span* OR
digitspan OR (span* ADJ1 (forward* OR back*)) OR spanforward
OR digit* symbol* OR symbol* substitution* OR symbol coding OR
DSST* OR family pictures OR figur* fluency OR groov* peg* OR pur-
due peg* OR pegboard OR letter fluency OR cowat OR controlled
oral word association OR controlled word association OR controlled
association* OR letter number OR LNS OR location learning OR LLT
OR logical memory OR matr* reas* OR object* assemb* OR pac* au-
dit* seri* additi* OR PASAT OR pict* arrangement* OR pict* compl*
OR rivermead behavio* OR rbmt* OR selecti* remindi* OR srt OR
Buschke OR VSRT OR semantic fluency OR verbal fluency OR cate-
gory fluency OR animal* naming OR occupation* naming OR spatial
span OR stroop OR symbol* search* OR trail making OR trial mak-
ing OR tmt OR halstead reitan OR verbal learn* test* OR verbal learn*
task* OR RAVLT* OR AVLT* OR CVLT* OR HVLT* OR verbal pair*
associat* OR visual reproduction OR WMS*).ti,ab,id,tm.

#3 Clinical neuropsychological test batteries
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(test battery/ OR (((tests OR test scores OR test results) ADJ2 (at-
tention* OR cognit* OR memory OR neuropsych* OR visual OR visu-
ospatial* OR visuomotor OR verbal* OR executive OR learning OR IQ
OR motor OR auditory OR perception OR inhibit* OR psychometr*))
OR (test* AND battery)).ti,ab,id,tm.) AND (neuropsychol*).ti,ab,id,hw,jx.

1 AND (2 OR 3)

9.2 test variables of interest.

Trail Making Test A, Trail Making Test B, Stroop Color, Stroop Word,
Stroop Color-Word, Letter Fluency / FAS / COWAT, Semantic Flu-
ency / Category Fluency / Animal Naming, Verbal Learning Test
Total, Verbal Learning Test Recall, Verbal Learning Test Recognition,
WAIS Vocabulary, WAIS Similarities, WAIS Information, WAIS Arith-
metic, WAIS Letter Number Sequencing, WAIS Comprehension, WAIS
Picture Completion, WAIS Block Design, WAIS Matrix Reasoning,
WAIS Digit Symbol Substitution / Coding, WAIS Symbol Search,
WAIS Picture Arrangement, WAIS Object Assembly, Logical Memory
/ Story Immediate, Logical Memory / Story Delayed, WMS Faces
Immediate, WMS Faces Delayed, WMS Verbal Paired Associates Im-
mediate, WMS Verbal Paired Associates Delayed, WMS Visual Paired
Associates, WMS Family Pictures Immediate, WMS Family Pictures
Delayed, WMS Visual Reproduction, WMS Spatial Span, Digit Span
Forward, Digit Span Backward, Rey Complex Figure Copy, Rey Com-
plex Figure Immediate Recall, Rey Complex Figure Delayed Recall,
Raven Progressive Matrices, Wisconsin Number of Categories, Wis-
consin Number of Perseverative Errors, Wisconsin Number of Perse-
verative Responses, Token Test Score, Grooved Pegboard Dominant,
Grooved Pegboard Non-dominant, Benton Visual Retention Test, Brix-
ton Spatial Anticipation, Rivermead Immediate 1 + 2, Rivermead De-
layed 1 + 2, Clock Drawing Test, Boston Naming Test, Ruff Figural
Fluency Test, Ruff 2 and 7, Buschke Selective Reminding Test Total
Recall (TR), Buschke Selective Reminding Test Long Term Retrieval
(LTR), Buschke Selective Reminding Test Long Term Storage (LTS),
Buschke Selective Reminding Test Consistent Long Term Retrieval
(CLTR), Free and Cued Selective Reminding Test (FCSRT), Buschke
Selective Reminding Test Delayed Recall (DR), Benton Facial Recog-
nition Test, Symbol Digit Modalities Test, Brief Visuospatial Memory
Test, Judgement of Line Orientation, Tower of London Total number
of moves, Continuous Performance Test (d’), Peabody Picture Vocab-
ulary Test, PASAT Total number correct, BADS Zoo map, BADS Key
search
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Figure 9.1: Bivariate raw and partial correlations between Trail Making Test B and Letter
Fluency, plotted for different studies. The studies are ordered by the size of
the correlation.

9.3 analysis without tmt b from royall et al . (2015)

Figure 1, left hand panel, shows that one correlation between TMTB
and LF is exceptional, in that is positive and large. This is also the
case for the correlation between TMTB and LMII from this study in
Figure 2, so it is not LF that is at fault. These findings remain after
partialing out the effect of age, sex, and level of education (right hand
panel). This could be a case of a coding error, but Royall et al. (2015)
is clear that the TMTB variable refers to the score in seconds, like
other studies. Royall et al. (2015) also note that the correlations with
TMTB seem strange. One last option is that it is simply due to sam-
pling variance. However, given that this concerns an impressive 875
participants, this is unlikely. Other correlations that seemed different
from the rest came from much smaller studies.

All correlations with TMTB were removed from the Royall correla-
tion matrix for the main analysis, leaving LMII, BNT and LF. We did
however run the analysis with these correlations with TMTB included.
The results are given in Table 1. The conclusions do not differ from
the conclusions of the main analysis: The second Jewsbury model was
considered best in this analysis as well.
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Figure 9.2: Bivariate raw and partial correlations between Trail Making Test B and Log-
ical Memory II, plotted for different studies. The studies are ordered by the
size of the correlation.

Table 9.1: Comparison Results with Correlations with TMT B from Royall et
al. (2015) Included.

χ2(df) RMSEA SRMR CFI AIC BIC

One factor 11193.5 (54) 0.058 0.218 0.937 11085.5 10599

Gross* 6698 (51) 0.046 0.147 0.962 6596 6136.5

Hoogland* 4672.1 (45) 0.041 0.118 0.974 4582.1 4176.7

Lezak 4886.3 (48) 0.041 0.122 0.973 4790.3 4357.9

Strauss 3828.7 (44) 0.038 0.112 0.979 3740.7 3344.4

Larrabee 3009.2 (48) 0.032 0.099 0.983 2913.2 2480.7

Jewsbury 1* 1347.6 (42) 0.023 0.058 0.993 1263.6 885.2

Jewsbury 2 1307.2 (41) 0.023 0.059 0.993 1225.2 855.9
*Model did not converge.
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9.4 study characteristics and correlation matrices
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Table 9.2: Adrover-Roig, D., Sesé, A., Barceló, F., & Palmer, A. (2012). A latent variable
approach to executive control in healthy ageing. Brain and Cognition, 78(3),
284-299. doi:10.1016/j.bandc.2012.01.005

N = 122

Sex coding: male > female

Education coding: higher is better

Correlation matrix available from original publication

Table 9.3: Albert, M., Massaro, J., DeCarli, C., Beiser, A., Seshadri, S., Wolf, P. A., &
Au, R. (2010). Profiles by sex of brain MRI and cognitive function in the
framingham offspring study. Alzheimer Disease and Associated Disorders, 24(2),
190-193. doi:10.1097/WAD.0b013e3181c1ed44

N = 2085

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LMI LMII

AGE 1 -0.011 -0.218 0.311 0.398 -0.21 -0.227

SEX -0.011 1 -0.096 -0.075 -0.038 0.11 0.12

EDU -0.218 -0.096 1 -0.155 -0.286 0.311 0.307

TMTA 0.311 -0.075 -0.155 1 0.57 -0.206 -0.211

TMTB 0.398 -0.038 -0.286 0.57 1 -0.281 -0.299

LMI -0.21 0.11 0.311 -0.206 -0.281 1 0.86

LMII -0.227 0.12 0.307 -0.211 -0.299 0.86 1
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Table 9.4: Andrejeva, N., Knebel, M., Dos Santos, V., Schmidt, J., Herold, C. J., Tudoran,
R., ... & Gorenc-Mahmutaj, L. (2016). Neurocognitive deficits and effects of cog-
nitive reserve in mild cognitive impairment. Dementia and Geriatric Cognitive
Disorders, 41(3-4), 199-209. doi:10.1159/000443791

N = 65

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LMI LMII SF BNT VLT-TR VLT-DR

AGE 1 -0.121 -0.072 0.193 0.143 -0.241 -0.22 -0.156 -0.071 -0.128 -0.029

SEX -0.121 1 -0.23 0.116 0.009 0.19 0.178 -0.036 -0.021 -0.357 -0.277

EDU -0.072 -0.23 1 -0.198 -0.276 0.066 0.028 -0.104 0.201 0.08 0.042

TMTA 0.193 0.116 -0.198 1 0.403 0.012 -0.021 0.243 -0.011 -0.052 -0.183

TMTB 0.143 0.009 -0.276 0.403 1 -0.016 -0.091 0.259 0.092 0.2 0.063

LMI -0.241 0.19 0.066 0.012 -0.016 1 0.864 0.083 0.274 0.069 0.043

LMII -0.22 0.178 0.028 -0.021 -0.091 0.864 1 0.131 0.215 0.048 0.036

SF -0.156 -0.036 -0.104 0.243 0.259 0.083 0.131 1 0.119 0.333 0.223

BNT -0.071 -0.021 0.201 -0.011 0.092 0.274 0.215 0.119 1 0.145 0.061

VLT-TR -0.128 -0.357 0.08 -0.052 0.2 0.069 0.048 0.333 0.145 1 0.567

VLT-DR -0.029 -0.277 0.042 -0.183 0.063 0.043 0.036 0.223 0.061 0.567 1

Table 9.5: Andreotti, C., & Hawkins, K. A. (2015). RBANS norms based on the relation-
ship of age, gender, education, and WRAT-3 reading to performance within an
older African American sample. The Clinical Neuropsychologist, 29(4), 442-465.
doi:10.1080/13854046.2015.1039589

N = 289

Sex coding: Sex not included

Education coding: higher is better

Correlation matrix available from original publication
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Table 9.6: Barnes, L. L., Yumoto, F., Capuano, A., Wilson, R. S., Bennett, D. A., & Tractenberg, R. E. (2016). Ex-
amination of the factor structure of a global cognitive function battery across race and time. Jour-
nal of the International Neuropsychological Society, 22(1), 66-75. doi:10.1017/S1355617715001113

N = 2854

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU LMI LMII SF DSF DSB COD BNT VLT-TR VLT-DR

AGE 1 -0.013 -0.186 -0.258 -0.279 -0.321 -0.121 -0.097 -0.382 -0.185 -0.352 -0.339

SEX -0.013 1 0.133 -0.064 -0.081 -0.115 0.042 -0.022 -0.077 0.065 -0.133 -0.126

EDU -0.186 0.133 1 0.269 0.252 0.245 0.152 0.212 0.293 0.168 0.225 0.203

LMI -0.258 -0.064 0.269 1 0.864 0.387 0.179 0.277 0.358 0.272 0.454 0.469

LMII -0.279 -0.081 0.252 0.864 1 0.419 0.173 0.273 0.381 0.294 0.489 0.54

SF -0.321 -0.115 0.245 0.387 0.419 1 0.203 0.29 0.498 0.337 0.491 0.475

DSF -0.121 0.042 0.152 0.179 0.173 0.203 1 0.465 0.21 0.15 0.233 0.157

DSB -0.097 -0.022 0.212 0.277 0.273 0.29 0.465 1 0.326 0.17 0.32 0.232

COD -0.382 -0.077 0.293 0.358 0.381 0.498 0.21 0.326 1 0.381 0.424 0.407

BNT -0.185 0.065 0.168 0.272 0.294 0.337 0.15 0.17 0.381 1 0.255 0.267

VLT-TR -0.352 -0.133 0.225 0.454 0.489 0.491 0.233 0.32 0.424 0.255 1 0.727

VLT-DR -0.339 -0.126 0.203 0.469 0.54 0.475 0.157 0.232 0.407 0.267 0.727 1
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Table 9.7: Bennett, I. J., & Stark, C. E. (2016). Mnemonic discrimination relates to perforant path in-
tegrity: an ultra-high resolution diffusion tensor imaging study. Neurobiology of Learning
and Memory, 129, 107-112. doi:10.1016/j.nlm.2015.06.014

N = 109

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU TMTA TMTB LMI LMII LF SF DSF DSB VLT-TR VLT-DR

AGE 1 0.027 0.263 0.48 0.496 -0.292 -0.39 -0.002 -0.248 -0.235 -0.043 -0.32 -0.305

SEX 0.027 1 0.157 0.02 0.066 0.015 -0.029 0.106 0.19 0.153 0.221 -0.15 -0.155

EDU 0.263 0.157 1 0.1 0.002 0.044 0.086 0.085 0.082 -0.093 0.046 0.03 0.057

TMTA 0.48 0.02 0.1 1 0.718 -0.144 -0.211 -0.187 -0.375 -0.116 -0.136 -0.187 -0.143

TMTB 0.496 0.066 0.002 0.718 1 -0.34 -0.424 -0.215 -0.295 -0.268 -0.395 -0.338 -0.257

LMI -0.292 0.015 0.044 -0.144 -0.34 1 0.877 0.084 0.325 0.253 0.34 0.467 0.523

LMII -0.39 -0.029 0.086 -0.211 -0.424 0.877 1 0.166 0.293 0.235 0.339 0.51 0.621

LF -0.002 0.106 0.085 -0.187 -0.215 0.084 0.166 1 0.223 0.252 0.319 0.173 0.097

SF -0.248 0.19 0.082 -0.375 -0.295 0.325 0.293 0.223 1 0.156 0.22 0.2 0.146

DSF -0.235 0.153 -0.093 -0.116 -0.268 0.253 0.235 0.252 0.156 1 0.384 0.319 0.196

DSB -0.043 0.221 0.046 -0.136 -0.395 0.34 0.339 0.319 0.22 0.384 1 0.284 0.232

VLT-TR -0.32 -0.15 0.03 -0.187 -0.338 0.467 0.51 0.173 0.2 0.319 0.284 1 0.769

VLT-DR -0.305 -0.155 0.057 -0.143 -0.257 0.523 0.621 0.097 0.146 0.196 0.232 0.769 1
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Table 9.8: Bezdicek, O., Libon, D. J., Stepankova, H., Panenkova, E.,
Lukavsky, J., Garrett, K. D., ... & Kopecek, M. (2014). Develop-
ment, validity, and normative data study for the 12-word Philadel-
phia Verbal Learning Test [czP (r) VLT-12] among older and very
old Czech adults. The Clinical Neuropsychologist, 28(7), 1162-1181.
doi:10.1080/13854046.2014.952666

N = 540

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTB LMI LMII LF SF DSF DSB BNT

AGE 1 0.012 -0.154 0.39 -0.177 -0.228 -0.171 -0.359 -0.213 -0.225 -0.264

SEX 0.012 1 -0.164 0.007 -0.121 -0.108 0.044 0.063 0.022 -0.087 -0.234

EDU -0.154 -0.164 1 -0.296 0.244 0.273 0.246 0.357 0.304 0.277 0.275

TMTB 0.39 0.007 -0.296 1 -0.157 -0.22 -0.331 -0.444 -0.257 -0.271 -0.335

LMI -0.177 -0.121 0.244 -0.157 1 0.87 0.262 0.224 0.153 0.301 0.419

LMII -0.228 -0.108 0.273 -0.22 0.87 1 0.287 0.308 0.189 0.284 0.432

LF -0.171 0.044 0.246 -0.331 0.262 0.287 1 0.541 0.3 0.349 0.331

SF -0.359 0.063 0.357 -0.444 0.224 0.308 0.541 1 0.305 0.322 0.368

DSF -0.213 0.022 0.304 -0.257 0.153 0.189 0.3 0.305 1 0.493 0.168

DSB -0.225 -0.087 0.277 -0.271 0.301 0.284 0.349 0.322 0.493 1 0.3

BNT -0.264 -0.234 0.275 -0.335 0.419 0.432 0.331 0.368 0.168 0.3 1

Table 9.9: Booth, T., Royle, N. A., Corley, J., Gow, A. J., Hernández,
M. D. C. V., Maniega, S. M., ... & Deary, I. J. (2015). As-
sociation of allostatic load with brain structure and cogni-
tive ability in later life. Neurobiology of Aging, 36(3), 1390-1399.
doi:10.1016/j.neurobiolaging.2014.12.020

N = 970

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LMI LMII SF DSB COD

AGE 1 0.02 -0.071 -0.18 -0.169 -0.144 -0.141 -0.198

SEX 0.02 1 -0.029 0.077 0.108 0.059 -0.041 0.162

EDU -0.071 -0.029 1 0.307 0.287 0.241 0.199 0.285

LMI -0.18 0.077 0.307 1 0.873 0.197 0.238 0.238

LMII -0.169 0.108 0.287 0.873 1 0.195 0.23 0.244

SF -0.144 0.059 0.241 0.197 0.195 1 0.28 0.342

DSB -0.141 -0.041 0.199 0.238 0.23 0.28 1 0.264

COD -0.198 0.162 0.285 0.238 0.244 0.342 0.264 1
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Table 9.10: Bouazzaoui, B., Fay, S., Taconnat, L., Angel, L., Vanneste, S., & Isingrini,
M. (2013). Differential involvement of knowledge representation and ex-
ecutive control in episodic memory performance in young and older
adults. Canadian Journal of Experimental Psychology/Revue Canadienne de
Psychologie Expérimentale, 67(2), 100-107. doi:10.1037/a0028517

N = 120

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LF SF

AGE 1 0.093 -0.229 -0.324 -0.23

SEX 0.093 1 -0.099 -0.189 -0.067

EDU -0.229 -0.099 1 0.312 0.038

LF -0.324 -0.189 0.312 1 0.411

SF -0.23 -0.067 0.038 0.411 1

Table 9.11: Bowden, S. C., Cook, M. J., Bardenhagen, F. J., Shores, E. A., & Carstairs, J.
R. (2004). Measurement invariance of core cognitive abilities in heteroge-
neous neurological and community samples. Intelligence, 32(4), 363-389.
doi:10.1016/j.intell.2004.05.002

N = 399

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LMI LMII DSF DSB COD VLT-TR VLT-DR

AGE 1 0.017 0.018 0.002 0.009 -0.082 -0.025 -0.148 -0.025 -0.045

SEX 0.017 1 -0.028 0.16 0.164 -0.076 -0.01 0.315 0.248 0.226

EDU 0.018 -0.028 1 0.189 0.188 0.132 0.182 0.238 0.278 0.176

LMI 0.002 0.16 0.189 1 0.916 0.133 0.21 0.252 0.533 0.468

LMII 0.009 0.164 0.188 0.916 1 0.121 0.196 0.238 0.531 0.51

DSF -0.082 -0.076 0.132 0.133 0.121 1 0.57 0.167 0.128 0.035

DSB -0.025 -0.01 0.182 0.21 0.196 0.57 1 0.247 0.289 0.173

COD -0.148 0.315 0.238 0.252 0.238 0.167 0.247 1 0.332 0.296

VLT-TR -0.025 0.248 0.278 0.533 0.531 0.128 0.289 0.332 1 0.745

VLT-DR -0.045 0.226 0.176 0.468 0.51 0.035 0.173 0.296 0.745 1
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Table 9.12: Bunce, D., Batterham, P. J., Christensen, H., & Mackinnon, A. J. (2014).
Causal associations between depression symptoms and cognition in a
community-based cohort of older adults. The American Journal of Geriatric
Psychiatry, 22(12), 1583-1591. doi:10.1016/j.jagp.2014.01.004

N = 853

Sex coding: male > female

Education coding: higher is better

AGE 1 -0.07 -0.07 -0.24 -0.33

SEX -0.07 1 0.17 0.07 0.02

EDU -0.07 0.17 1 0.16 0.34

SF -0.24 0.07 0.16 1 0.47

COD -0.33 0.02 0.34 0.47 1

Table 9.13: Chan, R. C., Wang, Y., Wang, L., Chen, E. Y., Manschreck, T. C., Li, Z. J.,
... & Gong, Q. Y. (2009). Neurological soft signs and their relationships to
neurocognitive functions: A re-visit with the structural equation model-
ing design. PLoS One, 4(12), 1-8. doi:10.1371/journal.pone.0008469

N = 160

Sex coding: male > female

Education coding: higher is better

Table 9.14: Chen, Y. C., Jung, C. C., Chen, J. H., Chiou, J. M., Chen, T. F., Chen, Y.
F., ... & Lee, M. S. (2017). Association of dietary patterns with global
and domain-specific cognitive decline in Chinese elderly. Journal of the
American Geriatrics Society, 65(6), 1159-1167. doi:10.1111/jgs.14741

N = 475

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU TMTA TMTB LMI LMII SF DSB

AGE 1 0.238 -0.089 0.376 0.424 -0.336 -0.301 -0.349 -0.257

SEX 0.238 1 0.287 -0.038 0.007 -0.027 -0.023 -0.36 -0.036

EDU -0.089 0.287 1 -0.373 -0.25 0.302 0.324 -0.017 0.289

TMTA 0.376 -0.038 -0.373 1 0.529 -0.297 -0.302 -0.292 -0.311

TMTB 0.424 0.007 -0.25 0.529 1 -0.348 -0.3 -0.257 -0.259

LMI -0.336 -0.027 0.302 -0.297 -0.348 1 0.89 0.358 0.372

LMII -0.301 -0.023 0.324 -0.302 -0.3 0.89 1 0.332 0.362

SF -0.349 -0.36 -0.017 -0.292 -0.257 0.358 0.332 1 0.238

DSB -0.257 -0.036 0.289 -0.311 -0.259 0.372 0.362 0.238 1
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Table 9.15: Ciccarelli, N., Fabbiani, M., Baldonero, E., Fanti, I., Cauda, R., Gi-
ambenedetto, S. D., & Silveri, M. C. (2012). Effect of aging and hu-
man immunodeficiency virus infection on cognitive abilities. Journal
of the American Geriatrics Society, 60(11), 2048-2055. doi:10.1111/j.1532-
5415.2012.04213.x

N = 39

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU TMTB LF DSF DSB COD VLT-TR VLT-DR

AGE 1 -0.112 -0.305 0.664 -0.314 -0.4 -0.657 -0.458 -0.532 -0.441

SEX -0.112 1 0.238 0.064 -0.02 0.169 0.172 0.38 -0.201 -0.218

EDU -0.305 0.238 1 -0.339 0.368 0.531 0.466 0.191 0.138 0.259

TMTB 0.664 0.064 -0.339 1 -0.415 -0.299 -0.555 -0.641 -0.404 -0.47

LF -0.314 -0.02 0.368 -0.415 1 0.326 0.442 0.102 0.444 0.536

DSF -0.4 0.169 0.531 -0.299 0.326 1 0.563 0.299 0.238 0.185

DSB -0.657 0.172 0.466 -0.555 0.442 0.563 1 0.349 0.454 0.384

COD -0.458 0.38 0.191 -0.641 0.102 0.299 0.349 1 0.184 0.244

VLT-TR -0.532 -0.201 0.138 -0.404 0.444 0.238 0.454 0.184 1 0.785

VLT-DR -0.441 -0.218 0.259 -0.47 0.536 0.185 0.384 0.244 0.785 1

Table 9.16: Darst, B. F., Koscik, R. L., Hermann, B. P., La Rue, A., Sager, M. A.,
Johnson, S. C., & Engelman, C. D. (2015). Heritability of cognitive traits
among siblings with a parental history of Alzheimer’s disease. Journal of
Alzheimer’s Disease, 45(4), 1149-1155. doi:10.3233/JAD-142658

N = 1226

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LMI LMII DSF DSB VLT-TR VLT-DR

AGE 1 -0.042 0.055 0.312 0.312 -0.09 -0.11 -0.048 -0.023 -0.225 -0.161

SEX -0.042 1 -0.073 -0.043 -0.024 -0.029 -0.026 -0.046 -0.017 0.157 0.147

EDU 0.055 -0.073 1 0.019 -0.12 0.238 0.237 0.166 0.215 0.136 0.148

TMTA 0.312 -0.043 0.019 1 0.496 -0.091 -0.11 -0.107 -0.13 -0.239 -0.18

TMTB 0.312 -0.024 -0.12 0.496 1 -0.222 -0.234 -0.219 -0.255 -0.275 -0.214

LMI -0.09 -0.029 0.238 -0.091 -0.222 1 0.897 0.166 0.266 0.442 0.407

LMII -0.11 -0.026 0.237 -0.11 -0.234 0.897 1 0.13 0.232 0.461 0.467

DSF -0.048 -0.046 0.166 -0.107 -0.219 0.166 0.13 1 0.562 0.17 0.056

DSB -0.023 -0.017 0.215 -0.13 -0.255 0.266 0.232 0.562 1 0.24 0.16

VLT-TR -0.225 0.157 0.136 -0.239 -0.275 0.442 0.461 0.17 0.24 1 0.766

VLT-DR -0.161 0.147 0.148 -0.18 -0.214 0.407 0.467 0.056 0.16 0.766 1
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Table 9.17: Duff, K. D., Langbehn, D. R., Schoenberg, M. R., Moser, D. J., Baade, L. E., Mold, J. W.,
. . . Adams, R. L. (2006). Examining the repeatable battery for the assessment of neu-
ropsychological status: Factor analytic studies in an elderly sample. The American Journal
of Geriatric Psychiatry, 14, 976-979. doi:10.1097/01.JGP.0000229690.70011

N = 823

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU LMI LMII SF DSF COD BNT VLT-TR VLT-DR

AGE 1 -0.062 -0.007 -0.205 -0.247 -0.191 -0.059 -0.424 -0.155 -0.249 -0.23

SEX -0.062 1 0.18 0.016 -0.053 -0.178 0.09 -0.07 0.183 -0.1 -0.171

EDU -0.007 0.18 1 0.248 0.209 0.085 0.187 0.221 0.275 0.192 0.108

LMI -0.205 0.016 0.248 1 0.787 0.343 0.291 0.383 0.313 0.582 0.55

LMII -0.247 -0.053 0.209 0.787 1 0.344 0.206 0.424 0.318 0.575 0.623

SF -0.191 -0.178 0.085 0.343 0.344 1 0.168 0.416 0.225 0.393 0.371

DSF -0.059 0.09 0.187 0.291 0.206 0.168 1 0.213 0.133 0.275 0.113

COD -0.424 -0.07 0.221 0.383 0.424 0.416 0.213 1 0.356 0.433 0.377

BNT -0.155 0.183 0.275 0.313 0.318 0.225 0.133 0.356 1 0.243 0.232

VLT-TR -0.249 -0.1 0.192 0.582 0.575 0.393 0.275 0.433 0.243 1 0.65

VLT-DR -0.23 -0.171 0.108 0.55 0.623 0.371 0.113 0.377 0.232 0.65 1

Table 9.18: Eifler, S., Rausch, F., Schirmbeck, F., Veckenstedt, R., Englisch, S., Meyer-Lindenberg, A.,
... & Zink, M. (2014). Neurocognitive capabilities modulate the integration of evidence in
schizophrenia. Psychiatry Research, 219(1), 72-78. doi:10.1016/j.psychres.2014.04.056

N = 52

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB SF COD VLT-TR

AGE 1 -0.104 0.436 -0.038 -0.053 0.427 -0.118 0.099

SEX -0.104 1 -0.025 -0.052 -0.057 0.042 0.368 0.085

EDU 0.436 -0.025 1 -0.225 -0.168 0.301 0.153 0.318

TMTA -0.038 -0.052 -0.225 1 0.486 -0.314 -0.353 -0.043

TMTB -0.053 -0.057 -0.168 0.486 1 -0.351 -0.269 -0.143

SF 0.427 0.042 0.301 -0.314 -0.351 1 0.093 0.171

COD -0.118 0.368 0.153 -0.353 -0.269 0.093 1 0.325

VLT-TR 0.099 0.085 0.318 -0.043 -0.143 0.171 0.325 1
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Table 9.19: Fernaeus, S. E., Östberg, P., Wahlund, L. O., & Hellström, Å.
(2014). Memory factors in Rey AVLT: implications for early stag-
ing of cognitive decline. Scandinavian Journal of Psychology, 55(6),
546-553. doi:10.1111/sjop.12157

N = 42

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU TMTA LMI LMII DSF DSB VLT-TR

AGE 1 -0.011 -0.407 -0.028 -0.239 -0.443 -0.241 -0.161 -0.367

SEX -0.011 1 -0.286 0.222 -0.111 -0.282 0.154 0.151 -0.217

EDU -0.407 -0.286 1 -0.264 0.3 0.187 0.058 0.088 0.476

TMTA -0.028 0.222 -0.264 1 -0.367 -0.3 -0.289 -0.253 -0.202

LMI -0.239 -0.111 0.3 -0.367 1 0.339 0.06 0.067 0.387

LMII -0.443 -0.282 0.187 -0.3 0.339 1 -0.03 -0.062 0.071

DSF -0.241 0.154 0.058 -0.289 0.06 -0.03 1 0.695 0.348

DSB -0.161 0.151 0.088 -0.253 0.067 -0.062 0.695 1 0.435

VLT-TR -0.367 -0.217 0.476 -0.202 0.387 0.071 0.348 0.435 1

Table 9.20: Ferreira, N. V., Cunha, P. J., da Costa, D. I., dos Santos, F., Costa,
F. O., Consolim-Colombo, F., & Irigoyen, M. C. (2015). Associ-
ation between functional performance and executive cognitive
functions in an elderly population including patients with low
ankle–brachial index. Clinical Interventions in Aging, 10, 839-847.
doi:10.2147/CIA.S69270

N = 40

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LF SF DSF DSB

AGE 1 -0.264 0.213 -0.054 -0.066 0.058 -0.266

SEX -0.264 1 -0.139 0.152 0.287 0.262 0.356

EDU 0.213 -0.139 1 0.243 0.28 0.177 -0.024

LF -0.054 0.152 0.243 1 0.539 0.24 0.48

SF -0.066 0.287 0.28 0.539 1 0.42 0.501

DSF 0.058 0.262 0.177 0.24 0.42 1 0.508

DSB -0.266 0.356 -0.024 0.48 0.501 0.508 1
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Table 9.21: Fortin, A., & Caza, N. (2014). A validation study of memory and
executive functions indexes in French-speaking healthy young and
older adults. Canadian Journal on Aging/La Revue canadienne du vieillisse-
ment, 33(1), 60-71. doi:10.1017/S0714980813000445

N = 98

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LMI LF DSB VLT-DR

AGE 1 0.027 0.005 -0.408 0.11 -0.382 -0.315

SEX 0.027 1 -0.234 0.062 -0.026 -0.006 0.344

EDU 0.005 -0.234 1 0.045 0.279 0.074 0.072

LMI -0.408 0.062 0.045 1 -0.114 0.16 0.4

LF 0.11 -0.026 0.279 -0.114 1 0.13 0.117

DSB -0.382 -0.006 0.074 0.16 0.13 1 0.253

VLT-DR -0.315 0.344 0.072 0.4 0.117 0.253 1

Table 9.22: Gallagher, P., Gray, J. M., Watson, S., Young, A. H., & Ferrier,
I. N. (2014). Neurocognitive functioning in bipolar depression: a
component structure analysis. Psychological Medicine, 44(5), 961-974.
doi:10.1017/S0033291713001487

N = 47

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LF DSF DSB COD VLT-TR VLT-DR

AGE 1 0.261 -0.097 0.196 -0.102 -0.025 -0.191 -0.442 -0.359

SEX 0.261 1 -0.046 0.196 0.037 -0.056 0.383 -0.007 -0.1

EDU -0.097 -0.046 1 0.127 0.029 0.383 0.397 0.247 0.15

LF 0.196 0.196 0.127 1 0.11 0.441 0.18 0.083 0.092

DSF -0.102 0.037 0.029 0.11 1 0.244 0.275 0.232 0.189

DSB -0.025 -0.056 0.383 0.441 0.244 1 0.249 0.05 0.192

COD -0.191 0.383 0.397 0.18 0.275 0.249 1 0.312 0.316

VLT-TR -0.442 -0.007 0.247 0.083 0.232 0.05 0.312 1 0.817

VLT-DR -0.359 -0.1 0.15 0.092 0.189 0.192 0.316 0.817 1
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Table 9.23: Horvat, P., Richards, M., Malyutina, S., Pajak, A., Kubinova, R.,
Tamosiunas, A., ... & Bobak, M. (2014). Life course socioeco-
nomic position and mid-late life cognitive function in Eastern
Europe. Journals of Gerontology Series B: Psychological Sciences and
Social Sciences, 69(3), 470-481. doi:10.1093/geronb/gbu014

Country: Czech Republic

N = 5490

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU SF VLT-TR

AGE 1 -0.08 -0.09 -0.21 -0.26

SEX -0.08 1 -0.32 0.01 0.27

EDU -0.09 -0.32 1 0.3 0.3

SF -0.21 0.01 0.3 1 0.4

VLT-TR -0.26 0.27 0.3 0.4 1

Table 9.24: Horvat, P., Richards, M., Malyutina, S., Pajak, A., Kubinova, R.,
Tamosiunas, A., ... & Bobak, M. (2014). Life course socioeco-
nomic position and mid-late life cognitive function in Eastern
Europe. Journals of Gerontology Series B: Psychological Sciences and
Social Sciences, 69(3), 470-481. doi:10.1093/geronb/gbu014

Country: Lithuania

N = 6762

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU SF VLT-TR

AGE 1 -0.02 -0.21 -0.29 -0.37

SEX -0.02 1 -0.01 -0.01 0.28

EDU -0.21 -0.01 1 0.4 0.43

SF -0.29 -0.01 0.4 1 0.4

VLT-TR -0.37 0.28 0.43 0.4 1
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Table 9.25: Horvat, P., Richards, M., Malyutina, S., Pajak, A., Kubinova, R.,
Tamosiunas, A., ... & Bobak, M. (2014). Life course socioeco-
nomic position and mid-late life cognitive function in Eastern
Europe. Journals of Gerontology Series B: Psychological Sciences and
Social Sciences, 69(3), 470-481. doi:10.1093/geronb/gbu014

Country: Poland

N = 10317

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU SF VLT-TR

AGE 1 -0.05 -0.11 -0.29 -0.36

SEX -0.05 1 -0.09 0 0.16

EDU -0.11 -0.09 1 0.38 0.36

SF -0.29 0 0.38 1 0.55

VLT-TR -0.36 0.16 0.36 0.55 1

Table 9.26: Horvat, P., Richards, M., Malyutina, S., Pajak, A., Kubinova, R.,
Tamosiunas, A., ... & Bobak, M. (2014). Life course socioeco-
nomic position and mid-late life cognitive function in Eastern
Europe. Journals of Gerontology Series B: Psychological Sciences and
Social Sciences, 69(3), 470-481. doi:10.1093/geronb/gbu014

Country: Russia

N = 8277

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU SF VLT-TR

AGE 1 -0.02 -0.17 -0.38 -0.42

SEX -0.02 1 -0.04 -0.03 0.17

EDU -0.17 -0.04 1 0.28 0.29

SF -0.38 -0.03 0.28 1 0.47

VLT-TR -0.42 0.17 0.29 0.47 1
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Table 9.27: Hedden, T., & Yoon, C. (2006). Individual differences in executive
processing predict susceptibility to interference in verbal work-
ing memory. Neuropsychology, 20(5), 511-528. doi:10.1037/0894-
4105.20.5.511.supp.

N = 121

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB DSB

AGE 1 -0.16 0.14 0.34 0.34 -0.19

SEX -0.16 1 -0.21 -0.07 0.01 -0.07

EDU 0.14 -0.21 1 0.05 -0.11 0.25

TMTA 0.34 -0.07 0.05 1 0.57 -0.23

TMTB 0.34 0.01 -0.11 0.57 1 -0.39

DSB -0.19 -0.07 0.25 -0.23 -0.39 1

Table 9.28: Hedden, T., Mormino, E. C., Amariglio, R. E., Younger, A. P.,
Schultz, A. P., Becker, J. A., ... & Rentz, D. M. (2012). Cognitive
profile of amyloid burden and white matter hyperintensities in
cognitively normal older adults. Journal of Neuroscience, 32(46),
16233-16242. doi:10.1523/JNEUROSCI.2462-12.2012

N = 168

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LF SF DSB COD

AGE 1 -0.04 -0.05 0.12 0.22 0.01 -0.19 -0.03 -0.22

SEX -0.04 1 -0.09 0.07 0.14 0.03 0.06 -0.15 0.06

EDU -0.05 -0.09 1 -0.22 -0.38 0.35 0.36 0.3 0.3

TMTA 0.12 0.07 -0.22 1 0.46 -0.13 -0.3 -0.12 -0.53

TMTB 0.22 0.14 -0.38 0.46 1 -0.35 -0.4 -0.28 -0.53

LF 0.01 0.03 0.35 -0.13 -0.35 1 0.56 0.35 0.38

SF -0.19 0.06 0.36 -0.3 -0.4 0.56 1 0.33 0.48

DSB -0.03 -0.15 0.3 -0.12 -0.28 0.35 0.33 1 0.28

COD -0.22 0.06 0.3 -0.53 -0.53 0.38 0.48 0.28 1
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Table 9.29: Hueng, T. T., Lee, I. H., Guog, Y. J., Chen, K. C., Chen, S. S.,
Chuang, S. P., ... & Yang, Y. K. (2011). Is a patient-administered
depression rating scale valid for detecting cognitive deficits in
patients with major depressive disorder? Psychiatry and Clinical
Neurosciences, 65(1), 70-76. doi:10.1111/j.1440-1819.2010.02166.x

N = 40

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU LMI LMII

AGE 1 0.039 -0.552 -0.315 -0.279

SEX 0.039 1 0.068 -0.143 -0.13

EDU -0.552 0.068 1 0.578 0.489

LMI -0.315 -0.143 0.578 1 0.896

LMII -0.279 -0.13 0.489 0.896 1

Table 9.30: Karagiannopoulou, L., Karamaouna, P., Zouraraki, C., Rous-
sos, P., Bitsios, P., & Giakoumaki, S. G. (2016). Cogni-
tive profiles of schizotypal dimensions in a community co-
hort: Common properties of differential manifestations. Jour-
nal of Clinical and Experimental Neuropsychology, 38(9), 1050-1063.
doi:10.1080/13803395.2016.1188890

N = 200

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LF SF

AGE 1 0.015 0.3 0.022 0.077 0.151 0.126

SEX 0.015 1 0.264 0.042 0.009 0.218 0.091

EDU 0.3 0.264 1 -0.28 -0.314 0.415 0.409

TMTA 0.022 0.042 -0.28 1 0.582 -0.239 -0.19

TMTB 0.077 0.009 -0.314 0.582 1 -0.187 -0.207

LF 0.151 0.218 0.415 -0.239 -0.187 1 0.491

SF 0.126 0.091 0.409 -0.19 -0.207 0.491 1
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Table 9.31: Kesse-Guyot, E., Andreeva, V. A., Lassale, C., Hercberg, S., &
Galan, P. (2014). Clustering of midlife lifestyle behaviors and sub-
sequent cognitive function: a longitudinal study. American Journal
of Public Health, 104(11), 170-177. doi:10.2105/AJPH.2014.302121

N = 2470

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LF SF DSF DSB

AGE 1 -0.11 -0.1 0.25 0.24 -0.08 -0.16 -0.09 -0.06

SEX -0.11 1 -0.04 0.01 0.02 0.12 0.04 -0.06 -0.01

EDU -0.1 -0.04 1 -0.15 -0.28 0.29 0.27 0.18 0.2

TMTA 0.25 0.01 -0.15 1 0.49 -0.18 -0.23 -0.12 -0.15

TMTB 0.24 0.02 -0.28 0.49 1 -0.32 -0.32 -0.25 -0.31

LF -0.08 0.12 0.29 -0.18 -0.32 1 0.5 0.26 0.27

SF -0.16 0.04 0.27 -0.23 -0.32 0.5 1 0.22 0.24

DSF -0.09 -0.06 0.18 -0.12 -0.25 0.26 0.22 1 0.46

DSB -0.06 -0.01 0.2 -0.15 -0.31 0.27 0.24 0.46 1

Table 9.32: Kim, J., Jeong, J. H., Han, S. H., Ryu, H. J., Lee, J. Y., Ryu,
S. H., ... & Choi, S. H. (2013). Reliability and validity of
the short form of the literacy-independent cognitive assess-
ment in the elderly. Journal of Clinical Neurology, 9(2), 111-117.
doi:10.3988/jcn.2013.9.2.111

N = 639

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU SF VLT-TR VLT-DR

AGE 1 -0.01 -0.255 -0.256 -0.337 -0.317

SEX -0.01 1 -0.409 -0.216 0.182 0.25

EDU -0.255 -0.409 1 0.37 0.2 0.049

SF -0.256 -0.216 0.37 1 0.263 0.258

VLT-TR -0.337 0.182 0.2 0.263 1 0.642

VLT-DR -0.317 0.25 0.049 0.258 0.642 1
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Table 9.33: Komulainen, P., Pedersen, M., Hänninen, T., Bruunsgaard, H., Lakka, T. A., Kivipelto,
M., ... & Rauramaa, R. (2008). BDNF is a novel marker of cognitive function in age-
ing women: the DR’s EXTRA Study. Neurobiology of Learning and Memory, 90(4), 596-603.
doi:10.1016/j.nlm.2008.07.014

N = 1388

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU SF BNT VLT-TR VLT-DR

AGE 1 0.028 -0.194 -0.189 -0.208 -0.265 -0.24

SEX 0.028 1 0.026 -0.01 -0.23 0.219 0.168

EDU -0.194 0.026 1 0.267 0.347 0.358 0.291

SF -0.189 -0.01 0.267 1 0.375 0.401 0.343

BNT -0.208 -0.23 0.347 0.375 1 0.253 0.238

VLT-TR -0.265 0.219 0.358 0.401 0.253 1 0.746

VLT-DR -0.24 0.168 0.291 0.343 0.238 0.746 1

Table 9.34: Krueger, K. R., Wilson, R. S., Bennett, D. A., & Aggarwal, N. T. (2009). A battery of tests for
assessing cognitive function in older Latino persons. Alzheimer Disease and Associated Disor-
ders, 23(4), 384. doi:10.1097/WAD.0b013e31819e0bfc

N = 66

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU LMI LMII SF DSF DSB COD BNT VLT-TR VLT-DR

AGE 1 0.07 0.092 -0.393 -0.304 -0.346 -0.141 -0.044 -0.095 -0.037 -0.352 -0.27

SEX 0.07 1 -0.019 -0.164 -0.203 -0.047 0.097 -0.097 -0.106 0.06 -0.106 -0.088

EDU 0.092 -0.019 1 0.058 0.208 0.147 0.036 0.243 0.371 0.459 0.259 0.273

LMI -0.393 -0.164 0.058 1 0.89 0.467 0.055 0.41 0.373 0.445 0.591 0.557

LMII -0.304 -0.203 0.208 0.89 1 0.403 0.063 0.42 0.464 0.512 0.62 0.573

SF -0.346 -0.047 0.147 0.467 0.403 1 0.201 0.411 0.428 0.444 0.557 0.502

DSF -0.141 0.097 0.036 0.055 0.063 0.201 1 0.303 0.103 0.229 0.253 0.072

DSB -0.044 -0.097 0.243 0.41 0.42 0.411 0.303 1 0.467 0.407 0.422 0.27

COD -0.095 -0.106 0.371 0.373 0.464 0.428 0.103 0.467 1 0.579 0.424 0.386

BNT -0.037 0.06 0.459 0.445 0.512 0.444 0.229 0.407 0.579 1 0.478 0.516

VLT-TR -0.352 -0.106 0.259 0.591 0.62 0.557 0.253 0.422 0.424 0.478 1 0.656

VLT-DR -0.27 -0.088 0.273 0.557 0.573 0.502 0.072 0.27 0.386 0.516 0.656 1
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Table 9.35: Laukka, E. J., Lövdén, M., Herlitz, A., Karlsson, S., Ferencz, B.,
Pantzar, A., ... & Bäckman, L. (2013). Genetic effects on old-age
cognitive functioning: a population-based study. Psychology and
Aging, 28(1), 262. doi:10.1037/a0030829

N = 2694

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LF SF

AGE 1 0.132 -0.347 -0.218 -0.452

SEX 0.132 1 -0.123 0.012 -0.016

EDU -0.347 -0.123 1 0.352 0.355

LF -0.218 0.012 0.352 1 0.498

SF -0.452 -0.016 0.355 0.498 1

Table 9.36: Lehrner, J., Moser, D., Klug, S., Gleiss, A., Auff, E., Pirker,
W., & Pusswald, G. (2014). Subjective memory complaints,
depressive symptoms and cognition in Parkinson’s disease
patients. European Journal of Neurology, 21(10), 1276-1285.
doi:10.1111/ene.12470

N = 247

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LF SF COD BNT

AGE 1 0.016 -0.213 0.309 0.367 -0.128 -0.282 -0.427 -0.169

SEX 0.016 1 -0.117 0.148 0.128 -0.162 -0.27 -0.06 -0.036

EDU -0.213 -0.117 1 -0.177 -0.293 0.288 0.178 0.206 0.101

TMTA 0.309 0.148 -0.177 1 0.661 -0.385 -0.371 -0.566 -0.197

TMTB 0.367 0.128 -0.293 0.661 1 -0.399 -0.362 -0.599 -0.199

LF -0.128 -0.162 0.288 -0.385 -0.399 1 0.496 0.478 0.194

SF -0.282 -0.27 0.178 -0.371 -0.362 0.496 1 0.514 0.316

COD -0.427 -0.06 0.206 -0.566 -0.599 0.478 0.514 1 0.233

BNT -0.169 -0.036 0.101 -0.197 -0.199 0.194 0.316 0.233 1
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Table 9.37: Liebel, S. W., Jones, E. C., Oshri, A., Hallowell, E. S., Jerskey, B. A., Gunstad, J., & Sweet,
L. H. (2017). Cognitive processing speed mediates the effects of cardiovascular disease on
executive functioning. Neuropsychology, 31(1), 44-51. doi:10.1037/neu0000324

N = 73

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTB LF SF COD

AGE 1 0.006 -0.152 0.54 -0.15 -0.45 -0.447

SEX 0.006 1 -0.159 -0.068 0.278 0.158 0.141

EDU -0.152 -0.159 1 -0.198 0.029 0.193 0.179

TMTB 0.54 -0.068 -0.198 1 -0.366 -0.474 -0.627

LF -0.15 0.278 0.029 -0.366 1 0.618 0.324

SF -0.45 0.158 0.193 -0.474 0.618 1 0.465

COD -0.447 0.141 0.179 -0.627 0.324 0.465 1

Table 9.38: Llinàs-Reglà, J., Vilalta-Franch, J., López-Pousa, S., Calvó-Perxas, L., Torrents Rodas, D., &
Garre-Olmo, J. (2017). The trail making test: Association with other neuropsychological mea-
sures and normative values for adults aged 55 years and older From a Spanish-speaking
population-based sample. Assessment, 24(2), 183-196. doi:10.1177/1073191115602552

N = 1923

Sex coding: female > male

Education coding: lower is better

AGE SEX EDU TMTA TMTB LF SF DSF DSB COD

AGE 1 -0.035 0.132 0.393 0.415 -0.152 -0.235 -0.158 -0.179 -0.469

SEX -0.035 1 0.134 0.083 0.086 -0.069 -0.069 -0.086 -0.135 -0.041

EDU 0.132 0.134 1 0.32 0.432 -0.312 -0.257 -0.303 -0.342 -0.522

TMTA 0.393 0.083 0.32 1 0.701 -0.304 -0.325 -0.286 -0.344 -0.654

TMTB 0.415 0.086 0.432 0.701 1 -0.393 -0.361 -0.379 -0.472 -0.708

LF -0.152 -0.069 -0.312 -0.304 -0.393 1 0.466 0.316 0.368 0.422

SF -0.235 -0.069 -0.257 -0.325 -0.361 0.466 1 0.238 0.302 0.401

DSF -0.158 -0.086 -0.303 -0.286 -0.379 0.316 0.238 1 0.573 0.387

DSB -0.179 -0.135 -0.342 -0.344 -0.472 0.368 0.302 0.573 1 0.458

COD -0.469 -0.041 -0.522 -0.654 -0.708 0.422 0.401 0.387 0.458 1
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Table 9.39: Mohn, C., Lystad, J. U., Ueland, T., Falkum, E., & Rund, B. R.
(2017). Factor analyzing the Norwegian MATRICS consensus cog-
nitive battery. Psychiatry and Clinical Neurosciences, 71(5), 336-345.
doi:10.1111/pcn.12513

N = 300

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU TMTA SF COD VLT-TR

AGE 1 -0.007 0.262 0.329 0.089 -0.473 -0.289

SEX -0.007 1 -0.176 0.002 -0.104 -0.236 -0.166

EDU 0.262 -0.176 1 0.062 0.139 0.037 0.063

TMTA 0.329 0.002 0.062 1 -0.176 -0.503 -0.225

SF 0.089 -0.104 0.139 -0.176 1 0.191 0.25

COD -0.473 -0.236 0.037 -0.503 0.191 1 0.449

VLT-TR -0.289 -0.166 0.063 -0.225 0.25 0.449 1

Table 9.40: Morrens, M., Hulstijn, W., Matton, C., Madani, Y., Van
Bouwel, L., Peuskens, J., & Sabbe, B. G. C. (2008). Delin-
eating psychomotor slowing from reduced processing speed
in schizophrenia. Cognitive Neuropsychiatry, 13(6), 457-471.
doi:10.1080/13546800802439312

N = 26

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU VLT-TR VLT-DR

AGE 1 0.182 -0.04 -0.04 0.17

SEX 0.182 1 0 -0.049 -0.024

EDU -0.04 0 1 -0.011 -0.237

VLT-TR -0.04 -0.049 -0.011 1 0.719

VLT-DR 0.17 -0.024 -0.237 0.719 1
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Table 9.41: Ojeda, N., Pena, J., Schretlen, D. J., Sanchez, P., Aretouli, E., Elizagarate, E.,
... & Gutierrez, M. (2012). Hierarchical structure of the cognitive processes
in schizophrenia: the fundamental role of processing speed. Schizophrenia Re-
search, 135(1), 72-78. doi:10.1016/j.schres.2011.12.004

N = 53

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA LMI LMII DSB COD

AGE 1 -0.172 -0.243 0.625 -0.04 -0.053 -0.441 -0.589

SEX -0.172 1 0.168 0.103 0.334 0.33 0.134 0.254

EDU -0.243 0.168 1 -0.12 0.354 0.353 0.235 0.326

TMTA 0.625 0.103 -0.12 1 -0.05 -0.044 -0.502 -0.46

LMI -0.04 0.334 0.354 -0.05 1 0.962 0.19 0.275

LMII -0.053 0.33 0.353 -0.044 0.962 1 0.156 0.305

DSB -0.441 0.134 0.235 -0.502 0.19 0.156 1 0.294

COD -0.589 0.254 0.326 -0.46 0.275 0.305 0.294 1

Table 9.42: de Paula, J. J., Bertola, L., Avila, R. T., Moreira, L., Coutinho, G., de Moraes, E.
N., ... & Malloy-Diniz, L. F. (2013). Clinical applicability and cutoff values for an
unstructured neuropsychological assessment protocol for older adults with low
formal education. PLoS One, 8(9), 1-9. doi:10.1371/journal.pone.0073167

N = 96

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LF SF DSF DSB VLT-TR VLT-DR

AGE 1 -0.141 -0.163 0.016 -0.085 -0.111 -0.179 -0.153 -0.018

SEX -0.141 1 0.274 0.091 0.305 0.212 0.098 0.176 0.254

EDU -0.163 0.274 1 0.411 0.564 0.211 0.401 0.447 0.309

LF 0.016 0.091 0.411 1 0.649 0.332 0.321 0.406 0.409

SF -0.085 0.305 0.564 0.649 1 0.247 0.35 0.537 0.596

DSF -0.111 0.212 0.211 0.332 0.247 1 0.246 0.34 0.256

DSB -0.179 0.098 0.401 0.321 0.35 0.246 1 0.101 0.157

VLT-TR -0.153 0.176 0.447 0.406 0.537 0.34 0.101 1 0.689

VLT-DR -0.018 0.254 0.309 0.409 0.596 0.256 0.157 0.689 1
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Table 9.43: Reppermund, S., Sachdev, P. S., Crawford, J., Kochan, N. A., Slavin, M.
J., Kang, K., ... & Brodaty, H. (2011). The relationship of neuropsycho-
logical function to instrumental activities of daily living in mild cogni-
tive impairment. International Journal of Geriatric Psychiatry, 26(8), 843-852.
doi:10.1002/gps.2612

N = 469

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LMII LF SF BNT VLT-TR VLT-DR

AGE 1 0.037 -0.088 0.279 0.347 -0.137 -0.13 -0.255 -0.254 -0.246 -0.208

SEX 0.037 1 -0.157 0.066 0.06 0.13 -0.043 0.018 -0.079 0.258 0.229

EDU -0.088 -0.157 1 -0.118 -0.208 0.212 0.39 0.262 0.193 0.148 -0.023

TMTA 0.279 0.066 -0.118 1 0.511 -0.039 -0.124 -0.193 -0.15 -0.117 -0.137

TMTB 0.347 0.06 -0.208 0.511 1 -0.129 -0.326 -0.274 -0.195 -0.231 -0.122

LMII -0.137 0.13 0.212 -0.039 -0.129 1 0.1 0.228 0.167 0.388 0.314

LF -0.13 -0.043 0.39 -0.124 -0.326 0.1 1 0.318 0.264 0.192 0.095

SF -0.255 0.018 0.262 -0.193 -0.274 0.228 0.318 1 0.299 0.259 0.126

BNT -0.254 -0.079 0.193 -0.15 -0.195 0.167 0.264 0.299 1 0.197 0.151

VLT-TR -0.246 0.258 0.148 -0.117 -0.231 0.388 0.192 0.259 0.197 1 0.756

VLT-DR -0.208 0.229 -0.023 -0.137 -0.122 0.314 0.095 0.126 0.151 0.756 1

Table 9.44: Ricarte, J. J., Ros, L., Latorre, J. M., Muñoz, M. D., Aguilar, M. J., &
Hernandez, J. V. (2016). Role of anxiety and brooding in specificity of
autobiographical recall. Scandinavian Journal of Psychology, 57(6), 495-500.
doi:10.1111/sjop.12323

N = 210

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU LF SF

AGE 1 0.138 -0.886 -0.37 -0.545

SEX 0.138 1 0.011 0.089 0.01

EDU -0.886 0.011 1 0.291 0.436

LF -0.37 0.089 0.291 1 0.669

SF -0.545 0.01 0.436 0.669 1
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Table 9.45: Royall, D. R., Bishnoi, R. J., & Palmer, R. F. (2015).
Serum IGF-BP2 strongly moderates age’s effect on cognition:
a MIMIC analysis. Neurobiology of Aging, 36(7), 2232-2240.
doi:10.1016/j.neurobiolaging.2015.04.003

N = 875

Sex coding: female > male

Education coding: higher is better

Table 9.46: Schmidt, C. S., Schumacher, L. V., Römer, P., Leonhart, R.,
Beume, L., Martin, M., ... & Kaller, C. P. (2017). Are seman-
tic and phonological fluency based on the same or distinct
sets of cognitive processes? Insights from factor analyses in
healthy adults and stroke patients. Neuropsychologia, 99, 148-155.
doi:10.1016/j.neuropsychologia.2017.02.019

N = 69

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LF SF

AGE 1 -0.001 0.855 0.003 0.25

SEX -0.001 1 -0.041 0.194 0.133

EDU 0.855 -0.041 1 -0.032 0.189

LF 0.003 0.194 -0.032 1 0.521

SF 0.25 0.133 0.189 0.521 1

Table 9.47: Siedlecki, K. L., Manly, J. J., Brickman, A. M., Schupf, N., Tang, M.
X., & Stern, Y. (2010). Do neuropsychological tests have the same
meaning in Spanish speakers as they do in English speakers?.
Neuropsychology, 24(3), 402-411. doi:10.1037/a0017515

N = 2113

Sex coding: female > male

Education coding: higher is better
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Table 9.48: Snitz, B. E., Yu, L., Crane, P. K., Chang, C. C. H., Hughes,
T. F., & Ganguli, M. (2012). Subjective cognitive complaints of
older adults at the population level: an item response theory
analysis. Alzheimer disease and associated disorders, 26(4), 344-351.
doi:10.1097/WAD.0b013e3182420bdf

N = 1356

Sex coding: Sex not included

Education coding: higher is better

AGE EDU TMTA TMTB LMI LMII LF SF DSF BNT

AGE 1 -0.189 0.357 0.417 -0.318 -0.289 -0.188 -0.325 -0.162 -0.3

EDU -0.189 1 -0.107 -0.187 0.186 0.168 0.2 0.168 0.12 0.232

TMTA 0.357 -0.107 1 0.546 -0.098 -0.07 -0.192 -0.256 -0.154 -0.247

TMTB 0.417 -0.187 0.546 1 -0.3 -0.268 -0.28 -0.364 -0.242 -0.343

LMI -0.318 0.186 -0.098 -0.3 1 0.872 0.246 0.364 0.225 0.391

LMII -0.289 0.168 -0.07 -0.268 0.872 1 0.243 0.357 0.203 0.376

LF -0.188 0.2 -0.192 -0.28 0.246 0.243 1 0.487 0.239 0.356

SF -0.325 0.168 -0.256 -0.364 0.364 0.357 0.487 1 0.217 0.452

DSF -0.162 0.12 -0.154 -0.242 0.225 0.203 0.239 0.217 1 0.222

BNT -0.3 0.232 -0.247 -0.343 0.391 0.376 0.356 0.452 0.222 1

Table 9.49: Tractenberg, R. E., Fillenbaum, G., Aisen, P. S., Liebke, D. E., Yu-
moto, F., & Kuchibhatla, M. N. (2010). What the CERAD battery
can tell us about executive function as a higher-order cognitive
faculty. Current Gerontology and Geriatrics Research, 510614, 1-10.
doi:10.1155/2010/510614

N = 918

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU SF BNT VLT-TR VLT-DR

AGE 1 -0.042 -0.428 -0.425 -0.509 -0.546 -0.533

SEX -0.042 1 0.037 -0.024 -0.072 0.211 0.169

EDU -0.428 0.037 1 0.518 0.584 0.567 0.496

SF -0.425 -0.024 0.518 1 0.546 0.559 0.524

BNT -0.509 -0.072 0.584 0.546 1 0.6 0.53

VLT-TR -0.546 0.211 0.567 0.559 0.6 1 0.801

VLT-DR -0.533 0.169 0.496 0.524 0.53 0.801 1
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Table 9.50: Tse, C. S., Balota, D. A., Yap, M. J., Duchek, J. M., & McCabe, D. P. (2010). Effects of healthy
aging and early stage dementia of the Alzheimer’s type on components of response time
distributions in three attention tasks. Neuropsychology, 24(3), 300-315. doi:10.1037/a0018274

N = 246

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LMI LF SF DSF DSB COD BNT

AGE 1 -0.061 0.021 0.342 0.355 -0.157 0.044 -0.245 0.056 -0.002 -0.284 -0.007

SEX -0.061 1 -0.159 0.008 0.019 0.015 -0.011 -0.083 -0.03 0.1 0.182 0.049

EDU 0.021 -0.159 1 -0.134 -0.205 0.247 0.284 0.199 0.104 0.063 0.119 0.102

TMTA 0.342 0.008 -0.134 1 0.673 -0.238 -0.277 -0.354 -0.045 -0.14 -0.582 -0.071

TMTB 0.355 0.019 -0.205 0.673 1 -0.251 -0.257 -0.251 -0.162 -0.271 -0.508 -0.03

LMI -0.157 0.015 0.247 -0.238 -0.251 1 0.186 0.246 0.074 0.195 0.23 0.097

LF 0.044 -0.011 0.284 -0.277 -0.257 0.186 1 0.394 0.234 0.312 0.355 0.08

SF -0.245 -0.083 0.199 -0.354 -0.251 0.246 0.394 1 0.19 0.217 0.344 0.213

DSF 0.056 -0.03 0.104 -0.045 -0.162 0.074 0.234 0.19 1 0.485 0.053 0.105

DSB -0.002 0.1 0.063 -0.14 -0.271 0.195 0.312 0.217 0.485 1 0.164 0.129

COD -0.284 0.182 0.119 -0.582 -0.508 0.23 0.355 0.344 0.053 0.164 1 0.023

BNT -0.007 0.049 0.102 -0.071 -0.03 0.097 0.08 0.213 0.105 0.129 0.023 1

Table 9.51: Tuokko, H. A., Chou, P. H. B., Bowden, S. C., Simard, M., Ska, B., & Crossley, M. (2009).
Partial measurement equivalence of French and English versions of the Canadian Study of
Health and Aging neuropsychological battery. Journal of the International Neuropsychological
Society, 15(3), 416-425. doi:10.1017/S1355617709090602

N = 786

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU LF SF COD VLT-TR

AGE 1 0.07 0.06 -0.02 -0.16 -0.28 -0.3

SEX 0.07 1 0.05 0.15 -0.06 0.07 0.25

EDU 0.06 0.05 1 0.51 0.33 0.51 0.3

LF -0.02 0.15 0.51 1 0.48 0.58 0.42

SF -0.16 -0.06 0.33 0.48 1 0.51 0.37

COD -0.28 0.07 0.51 0.58 0.51 1 0.52

VLT-TR -0.3 0.25 0.3 0.42 0.37 0.52 1
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Table 9.52: Valenzuela, M. J., & Sachdev, P. (2007). Assessment of complex mental activity across
the lifespan: development of the Lifetime of Experiences Questionnaire (LEQ). Psy-
chological Medicine, 37(7), 1015-1025. doi:10.1017/S003329170600938X

N = 73

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU TMTA TMTB LMI LMII LF SF DSF DSB COD BNT

AGE 1 0.031 -0.168 0.459 0.493 -0.302 -0.362 -0.178 -0.47 0.072 -0.118 -0.482 -0.309

SEX 0.031 1 -0.3 0.139 0.017 0.078 0.011 0.227 0.07 -0.137 -0.097 -0.027 0.072

EDU -0.168 -0.3 1 -0.185 -0.137 0.17 0.259 0.099 0.126 0.012 0.155 0.309 0.037

TMTA 0.459 0.139 -0.185 1 0.546 -0.039 -0.183 -0.056 -0.344 0.029 0.046 -0.457 -0.258

TMTB 0.493 0.017 -0.137 0.546 1 -0.289 -0.403 -0.244 -0.276 -0.142 -0.299 -0.606 -0.387

LMI -0.302 0.078 0.17 -0.039 -0.289 1 0.895 0.154 0.231 0.097 0.325 0.39 0.425

LMII -0.362 0.011 0.259 -0.183 -0.403 0.895 1 0.159 0.273 0.122 0.355 0.537 0.5

LF -0.178 0.227 0.099 -0.056 -0.244 0.154 0.159 1 0.365 0.253 0.313 0.407 0.067

SF -0.47 0.07 0.126 -0.344 -0.276 0.231 0.273 0.365 1 -0.107 0.074 0.398 0.284

DSF 0.072 -0.137 0.012 0.029 -0.142 0.097 0.122 0.253 -0.107 1 0.498 0.222 0.091

DSB -0.118 -0.097 0.155 0.046 -0.299 0.325 0.355 0.313 0.074 0.498 1 0.249 0.221

COD -0.482 -0.027 0.309 -0.457 -0.606 0.39 0.537 0.407 0.398 0.222 0.249 1 0.288

BNT -0.309 0.072 0.037 -0.258 -0.387 0.425 0.5 0.067 0.284 0.091 0.221 0.288 1

Table 9.53: Waldinger, R. J., Cohen, S., Schulz, M. S., & Crowell, J. A. (2015). Security of attachment
to spouses in late life: Concurrent and prospective links with cognitive and emotional
well-being. Clinical Psychological Science, 3(4), 516-529. doi:10.1177/2167702614541261

N = 240

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU TMTA TMTB LF SF BNT VLT-TR VLT-DR

AGE 1 0.335 0.514 0.266 0.247 0.08 -0.269 -0.059 -0.053 -0.186

SEX 0.335 1 0.139 0.124 0.105 -0.136 -0.319 0.078 -0.121 -0.164

EDU 0.514 0.139 1 0.046 0.009 0.31 -0.008 0.033 0.227 0.064

TMTA 0.266 0.124 0.046 1 0.581 -0.336 -0.387 -0.224 -0.269 -0.293

TMTB 0.247 0.105 0.009 0.581 1 -0.338 -0.443 -0.126 -0.4 -0.408

LF 0.08 -0.136 0.31 -0.336 -0.338 1 0.553 0.108 0.443 0.318

SF -0.269 -0.319 -0.008 -0.387 -0.443 0.553 1 0.301 0.559 0.521

BNT -0.059 0.078 0.033 -0.224 -0.126 0.108 0.301 1 0.293 0.252

VLT-TR -0.053 -0.121 0.227 -0.269 -0.4 0.443 0.559 0.293 1 0.74

VLT-DR -0.186 -0.164 0.064 -0.293 -0.408 0.318 0.521 0.252 0.74 1
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Table 9.54: Watts, A. S., Loskutova, N., Burns, J. M., & Johnson, D. K. (2013).
Metabolic syndrome and cognitive decline in early Alzheimer’s
disease and healthy older adults. Journal of Alzheimer’s Dis-
ease, 35(2), 253-265. doi:10.3233/JAD-121168

N = 73

Sex coding: male > female

Education coding: higher is better

AGE SEX EDU LMI LMII

AGE 1 -0.051 -0.072 -0.264 -0.296

SEX -0.051 1 0.284 -0.138 -0.165

EDU -0.072 0.284 1 0.153 0.081

LMI -0.264 -0.138 0.153 1 0.847

LMII -0.296 -0.165 0.081 0.847 1

Table 9.55: Wettstein, M., Kuźma, E., Wahl, H. W., & Heyl, V. (2016). Cross-
sectional and longitudinal relationship between neuroticism and
cognitive ability in advanced old age: The moderating role of
severe sensory impairment. Aging & Mental Health, 20(9), 918-929.
doi:10.1080/13607863.2015.1049119

N = 150

Sex coding: female > male

Education coding: higher is better

AGE SEX EDU SF DSB

AGE 1 0.077 0.124 -0.19 -0.061

SEX 0.077 1 -0.009 0.007 0.132

EDU 0.124 -0.009 1 0.262 0.124

SF -0.19 0.007 0.262 1 0.198

DSB -0.061 0.132 0.124 0.198 1

Table 9.56: Williams, P. G., Suchy, Y., & Kraybill, M. L. (2010). Five-
factor model personality traits and executive functioning among
older adults. Journal of Research in Personality, 44(4), 485-491.
doi:10.1016/j.jrp.2010.06.002

N = 62

Sex coding: female > male

Education coding: higher is better
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10.1 sample characteristics of the pd group from broed-
ers et al . (2013) in table 1

10.2 cognitive domains

We also explored which cognitive domains were most often impaired
in PD patients who were MNC-impaired, and whether there was a
distinct profile for the patients who develop PDD. Figure 1 shows
the mean demographically corrected z-scores at baseline. Negative
z-scores indicate worse performance than the norm. From the figure,
it can be observed that those who were MNC-impaired at baseline
(red and blue solid lines), mainly showed impairment on the River-
mead Behavioural Memory Test and were slightly more impaired on
the TMT a and the WAIS-R Digit Symbol Coding task. The WAIS-R
Digit Symbol Coding task seemed to be low for all groups which is
probably due to Parkinson pathology affecting motor performance.
However, these tests did not discriminate very well between the PD
patients who developed PDD after 5 years and those who did not.
Those who were MNC-impaired and who developed PDD (red solid
line) after 5 years are distinguished by low scores on the Auditory
Verbal Learning subtests and Letter Fluency. These tests seem to dis-
criminate well between those who develop PDD and those who do
not. Figure 2 plots a line for every individual patient, and thus pro-
vides information on individual differences.

Table 10.1: Sample characteristics of the PD group from Broeders et al. (2013)

N % Men Age range at baseline

Baseline with NPA* 123 54% 32 - 84

attrition = 26

3-year follow-up 97 54% 35 - 84

attrition = 24

5-year follow-up 73 55% 35 - 84
*NPA = Neuropsychological Assessment
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Figure 10.1: Mean demographically corrected z-scores for PD patients at baseline. Red indicates
PDD after 5 years. Blue indicates no PDD after five years. The solid line is MNC-
impaired, dashed is not MNC-unimpaired.
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Figure 10.2: Score profiles of individual patients, in terms of differences between ex-
pected scores and observed scores. The left panel shows the patients who
developed PDD after 5 years. The right panel shows those that did not
develop PDD after 5 years. Solid lines: patients who are MNC impaired
at baseline, dashed lines: patients who are not MNC impaired at baseline.
The black lines denote the matching mean scores.
Note that not all patients completed all tests. Therefore, some lines are
interrupted.
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Table 10.2: A comparison of the classifications between the traditional PD-MCI crite-
ria and the MNC method applied with ANDI. Note that the number of
PDD cases and missing cases are cumulative.

ANDI MNC impaired ANDI MNC not impaired

3 years 5 years 3 years 5 years

PD-MCI 24 6 PDD 8 PDD 19 1 PDD 2 PDD

12 no PDD 4 no PDD 16 no PDD 10 no PDD

6 missing 12 missing 2 missing 7 missing

no PD-MCI 8 2 PDD 4 PDD 72 0 PDD 3 PDD

4 no PDD 2 no PDD 56 no PDD 40 no PDD

2 missing 2 missing 16 missing 29 missing

10.3 overlap in diagnosis between methods

We investigated whether the patients who were diagnosed as im-
paired were the same across methods, or whether there were differ-
ences. We also examined how differences in who was diagnosed as
impaired, can explain the differences in how well methods perform
in the prediction of progression to PDD after three and five years. As
can be seen in Table 2, there were 19 PD patients who were unim-
paired according to the MNC method applied with ANDI, whereas
they were impaired according to the original PD-MCI method. One
of these patients progressed to PDD after three years, and two pro-
gressed to PDD after five years. Although the number of patients im-
paired according to the PD-MCI method (N=43) was higher than the
number impaired according to the MNC method (N=32), there were
still eight patients who were only diagnosed as impaired by the MNC
method. Of these eight patients, two progressed to PDD after three
years, and four progressed to PDD after five years. Therefore, these
eight patients seem to be an important subgroup that was missed
with the traditional method. Overall, there was a moderate degree of
agreement between methods (78%, κ = 0.49).

We made a similar comparison of the two methods that make use of
the ANDI database. The PD-MCI criteria applied with ANDI and the
MNC methods applied with ANDI yielded different results, although
there was a good degree of agreement between methods (86%, κ =
0.63). As can be seen in Table 3, nine patients had PD-MCI according
to the criteria applied with ANDI but are not abnormal according to
the MNC method. None of these patients developed dementia after
three or five years. Eight patients were MNC-abnormal but did not
have PD-MCI according to the criteria. Of these eight, two developed
PDD after three years, and two more patients (four in total) had de-
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Table 10.3: A comparison of the classifications between the PD-MCI criteria applied
with ANDI and the MNC method applied with ANDI. Note that the
number of PDD cases and missing cases are cumulative.

ANDI MNC impaired ANDI MNC not impaired

3 years 5 years 3 years 5 years

ANDI PD-MCI 24 6 PDD 8 PDD 9 0 PDD 0 PDD

12 no PDD 4 no PDD 8 no PDD 4 no PDD

6 missing 12 missing 1 missing 5 missing

ANDI no PD-MCI 8 2 PDD 4 PDD 82 1 PDD 5 PDD

4 no PDD 2 no PDD 64 no PDD 46 no PDD

2 missing 2 missing 17 missing 31 missing

veloped dementia after five years. Again, the MNC method identified
some patients who would develop PDD but who were not detected
by the PD-MCI method.

Last, we compared the two applications of the PD-MCI criteria.
More patients were diagnosed with the traditional PD-MCI criteria
than with the ANDI-MCI-criteria. There was a good degree of agree-
ment between methods (85%, κ = 0.68). This could suggest that the
ANDI PD-MCI criteria method diagnosed the same patients as the
original PD-MCI criteria, but fewer. The results in Table 4 indicate that
this indeed was the case to some extent. There were 13 PD patients
who were unimpaired according to the PD-MCI criteria applied with
ANDI, but were impaired according to the PD-MCI criteria as applied
by Broeders et al. (2013). Three of these patients progressed to PDD
after 5 years. The fact that the PD-MCI method with ANDI diagnosed
fewer patients implies that future PDD patients were missed at base-
line. However, there were also three patients who were diagnosed as
PD-MCI by the PD-MCI criteria applied with ANDI who were not im-
paired when using the PD-MCI criteria as applied by Broeders et al.
(2013). Of these three, one became demented after three years. Thus,
using ANDI with the PD-MCI criteria also identified one patient who
developed PDD who was missed by the traditional method.
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Table 10.4: A comparison of the classifications between the traditional PD-MCI cri-
teria and the PD-MCI criteria applied with ANDI. Note that the number
of PDD cases and missing cases are cumulative.

ANDI PD-MCI ANDI no PD-MCI

3 years 5 years 3 years 5 years

PD-MCI 30 5 PDD 7 PDD 13 2 PDD 3 PDD

20 no PDD 8 no PDD 8 no PDD 6 PDD

5 missing 15 missing 3 missing 4 missing

no PD-MCI 3 1 PDD 1 PDD 77 1 PDD 6 PDD

0 no PDD 0 no PDD 60 no PDD 42 no PDD

2 missing 2 missing 16 missing 29 missing



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 185PDF page: 185PDF page: 185PDF page: 185

11
REFERENCES

Aarsland, D., Andersen, K., Larsen, J. P., Lolk, A., Nielsen, H., &
Kragh–Sørensen, P. (2001). Risk of dementia in Parkinson’s disease:
A community-based, prospective study. Neurology, 56(6), 730-736.

Aarsland, D., Brønnick, K., Larsen, J. P., Tysnes, O. B., Alves, G.,
& Norwegian ParkWest Study Group. (2009). Cognitive impairment
in incident, untreated Parkinson disease: The Norwegian ParkWest
Study. Neurology, 72(13), 1121-1126.

Adrover-Roig, D., Sesé, A., Barceló, F., & Palmer, A. (2012). A latent
variable approach to executive control in healthy ageing. Brain and
Cognition, 78(3), 284-299.

Advanced Neuropsychological Diagnostics Infrastructure. (2016, Au-
gust 2). Retrieved from http://www.andi.nl

Agelink van Rentergem, J. A., Murre, J. M. J., & Huizenga, H. M.
(2017). Multivariate normative comparisons using an aggregated database.
PLoS ONE, 12, 1-18.

Agelink van Rentergem, J. A., de Vent, N. R., Schmand, B. A.,
Murre, J. M. J., & Huizenga, H. M. (2017). Multivariate normative
comparisons for neuropsychological assessment by a multilevel factor
structure or multiple imputation approach, Psychological Assessment.
Advance online publication. doi:10.1037/pas0000489

Agresti, A., & Coull B.A. (1998). Approximate is better than “exact”
for interval estimation of binomial proportions. The American Statisti-
cian, 52, 119-126.

Albert, M., Massaro, J., DeCarli, C., Beiser, A., Seshadri, S., Wolf,
P. A., & Au, R. (2010). Profiles by sex of brain MRI and cognitive
function in the framingham offspring study. Alzheimer Disease and As-
sociated Disorders, 24(2), 190-193.

Andrejeva, N., Knebel, M., Dos Santos, V., Schmidt, J., Herold, C. J.,
Tudoran, R., ... & Gorenc-Mahmutaj, L. (2016). Neurocognitive deficits
and effects of cognitive reserve in mild cognitive impairment. Demen-
tia and Geriatric Cognitive Disorders, 41(3-4), 199-209.

Andreotti, C., & Hawkins, K. A. (2015). RBANS norms based on
the relationship of age, gender, education, and WRAT-3 reading to
performance within an older African American sample. The Clinical
Neuropsychologist, 29(4), 442-465.

Armstrong, R. A. (2014). When to use the Bonferroni correction. Oph-
thalmic and Physiological Optics, 34(5), 502-508.

Asendorpf, J. B., Conner, M., De Fruyt, F., De Houwer, J., Denis-
sen, J. J., Fiedler, K., ... & Perugini, M. (2013). Recommendations



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 186PDF page: 186PDF page: 186PDF page: 186

178 references

for increasing replicability in psychology. European Journal of Personal-
ity, 27(2), 108-119.

Barnes, L. L., Yumoto, F., Capuano, A., Wilson, R. S., Bennett, D. A.,
& Tractenberg, R. E. (2016). Examination of the factor structure of a
global cognitive function battery across race and time. Journal of the
International Neuropsychological Society, 22(1), 66-75.

Bartram, D. (2008). Global norms: Towards some guidelines for ag-
gregating personality norms across countries. International Journal of
Testing, 8(4), 315-333.

Bennett, I. J., & Stark, C. E. (2016). Mnemonic discrimination relates
to perforant path integrity: an ultra-high resolution diffusion tensor
imaging study. Neurobiology of Learning and Memory, 129, 107-112.

Benton, A.L. & Hamsher, K. (1983). Multilingual Aphasia Examina-
tion. Iowa City: AJA Associates.

Benton, A.L., Hamsher, K., Varney, N., & Spreen, O. (1983). Contributions
to neuropsychological assessment - A clinical manual. New York: Oxford
University Press.

Bezdicek, O., Libon, D. J., Stepankova, H., Panenkova, E., Lukavsky,
J., Garrett, K. D., ... & Kopecek, M. (2014). Development, validity, and
normative data study for the 12-word Philadelphia Verbal Learning
Test [czP (r) VLT-12] among older and very old Czech adults. The
Clinical Neuropsychologist, 28(7), 1162-1181.

Binder, L. M., Iverson, G. L., & Brooks, B. L. (2009). To err is human:
“Abnormal” neuropsychological scores and variability are common in
healthy adults. Archives of Clinical Neuropsychology, 24(1), 31-46.

Bird, C. M., Castelli, F., Malik, O., Frith, U., & Husain, M. (2004).
The impact of extensive medial frontal lobe damage on ‘Theory of
Mind’ and cognition. Brain, 127, 914-928.

Blakesley, R. E., Mazumdar, S., Dew, M. A., Houck, P. R., Tang, G.,
Reynolds III, C. F., & Butters, M. A. (2009). Comparisons of methods
for multiple hypothesis testing in neuropsychological research. Neu-
ropsychology, 23(2), 255-264.

Bland, J. M., & Altman, D. G. (1995). Multiple significance tests:
The Bonferroni method. British Medical Journal, 310(6973), 170.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen,
J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear
mixed models: A practical guide for ecology and evolution. Trends in
Ecology & Evolution, 24, 127-135.

Bollen, K. A. (2002). Latent variables in psychology and the social
sciences. Annual Review of Psychology, 53, 605-634.

Booth, T., Royle, N. A., Corley, J., Gow, A. J., Hernández, M. D. C. V.,
Maniega, S. M., ... & Deary, I. J. (2015). Association of allostatic load
with brain structure and cognitive ability in later life. Neurobiology of
Aging, 36(3), 1390-1399.

Borsboom, D. (2008). Psychometric perspectives on diagnostic sys-
tems. Journal of Clinical Psychology, 64(9), 1089-1108.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 187PDF page: 187PDF page: 187PDF page: 187

references 179

Bouazzaoui, B., Fay, S., Taconnat, L., Angel, L., Vanneste, S., & Isin-
grini, M. (2013). Differential involvement of knowledge representa-
tion and executive control in episodic memory performance in young
and older adults. Canadian Journal of Experimental Psychology/Revue
Canadienne de Psychologie Expérimentale, 67(2), 100-107.

Bowden, S. C., Cook, M. J., Bardenhagen, F. J., Shores, E. A., &
Carstairs, J. R. (2004). Measurement invariance of core cognitive abil-
ities in heterogeneous neurological and community samples. Intelli-
gence, 32(4), 363-389.

Box, G. E. and Cox, D. R. (1964). An analysis of transformations.
Journal of the Royal Statistical Society. Series B (Methodological), 26(2),
211-252.

Broeders, M., de Bie, R. M. A., Velseboer, D. C., Speelman, J. D.,
Muslimovic, D., & Schmand, B. (2013). Evolution of mild cognitive
impairment in Parkinson disease. Neurology, 81(4), 346-352.

Broeders, M., Velseboer, D. C., de Bie, R., Speelman, J. D., Mus-
limovic, D., Post, B., ..., Schmand, B. (2013). Cognitive change in
newly-diagnosed patients with Parkinson’s disease: A 5-year follow-
up study. Journal of the International Neuropsychological Society, 19, 695-
708.

Brooks, B. L., Iverson, G. L., & White, T. (2009). Advanced interpre-
tation of the neuropsychological assessment battery with older adults:
base rate analyses, discrepancy scores, and interpreting change. Archives
of Clinical Neuropsychology, 24, 647-657.

Bunce, D., Batterham, P. J., Christensen, H., & Mackinnon, A. J.
(2014). Causal associations between depression symptoms and cog-
nition in a community-based cohort of older adults. The American
Journal of Geriatric Psychiatry, 22(12), 1583-1591.

Burns, N. R., Nettelbeck, T., & McPherson, J. (2009). Attention and
intelligence: A factor analytic study. Journal of Individual Differences, 30(1),
44-57.

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivari-
ate imputation by chained equations in R. Journal of Statistical Soft-
ware, 45.

van Buuren, S. (2011). Multiple imputation of multilevel data. In J.
J. Hox, & J. K. Roberts (Eds.), Handbook of advanced multilevel analysis
(pp. 173–196). New York: Routledge.

Cao, J., & Zhang, S. (2014). Multiple comparison procedures. Jour-
nal of the American Medical Association, 312(5), 543-544.

Cappelletti, M., Butterworth, B., & Kopelman, M. (2012). Numeracy
skills in patients with degenerative disorders and focal brain lesions:
A neuropsychological investigation. Neuropsychology, 26, 1-19.

Castelli, L., Rizzi, L., Zibetti, M., Angrisano, S., Lanotte, M., & Lop-
iano, L. (2010). Neuropsychological changes 1-year after subthalamic
DBS in PD patients: A prospective controlled study. Parkinsonism &
Related Disorders, 16, 115-118.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 188PDF page: 188PDF page: 188PDF page: 188

180 references

Caviness, J. N., Driver-Dunckley, E., Connor, D. J., Sabbagh, M. N.,
Hentz, J. G., Noble, B., ..., Adler, C. H. (2007). Defining mild cognitive
impairment in Parkinson’s disease. Movement Disorders, 22(9), 1272-
1277.

Chan, R. C., Wang, Y., Wang, L., Chen, E. Y., Manschreck, T. C., Li,
Z. J., ... & Gong, Q. Y. (2009). Neurological soft signs and their rela-
tionships to neurocognitive functions: A re-visit with the structural
equation modeling design. PLoS One, 4(12), 1-8.

Chen, Y. C., Jung, C. C., Chen, J. H., Chiou, J. M., Chen, T. F., Chen,
Y. F., ... & Lee, M. S. (2017). Association of dietary patterns with global
and domain-specific cognitive decline in Chinese elderly. Journal of the
American Geriatrics Society, 65(6), 1159-1167.

Cheng, G., Huang, C., Deng, H., & Wang, H. (2012). Diabetes as
a risk factor for dementia and mild cognitive impairment: A meta-
analysis of longitudinal studies. Internal Medicine Journal, 42(5), 484-
491.

Cheung, M. W. L., & Chan, W. (2005). Meta-analytic structural equa-
tion modeling: A two-stage approach. Psychological Methods, 10(1), 40-
64.

Cheung, M. W. L. (2015). metaSEM: An R package for meta-analysis
using structural equation modeling. Frontiers in Psychology, 5(1521), 1-
7.

Ciccarelli, N., Fabbiani, M., Baldonero, E., Fanti, I., Cauda, R., Gi-
ambenedetto, S. D., & Silveri, M. C. (2012). Effect of aging and human
immunodeficiency virus infection on cognitive abilities. Journal of the
American Geriatrics Society, 60(11), 2048-2055.

Clark, L. A., &Watson, D. (1995). Constructing validity: Basic issues
in objective scale development. Psychological Assessment, 7(3), 309.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multi-
ple regression/correlation analysis for the behavioral sciences. Mahwah, NJ:
Lawrence Erlbaum Associates.

Cohen, S., ter Stege, J. A., Geurtsen, G. J., Scherpbier, H. J., Kui-
jpers, T. W., Reiss, P., ..., Pajkrt, D. (2014). Poorer cognitive perfor-
mance in perinatally HIV-infected children as compared to healthy
socioeconomically matched controls. Clinical Infectious Diseases, 60(7),
1111–1119.

Crawford, J. R., & Allan, K. M. (1994). The Mahalanobis Distance
index of WAIS-R subtest scatter: Psychometric properties in a healthy
UK sample. British Journal of Clinical Psychology, 33, 65-69.

Crawford, J. R., & Garthwaite, P. H. (2002). Investigation of the
single case in neuropsychology: Confidence limits on the abnormality
of test scores and test score differences. Neuropsychologia, 40, 1196-
1208.

Crawford, J. R., Garthwaite, P. H., Azzalini, A., Howell, D. C., &
Laws, K. R. (2006). Testing for a deficit in single-case studies: effects
of departures from normality. Neuropsychologia, 44, 666–677.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 189PDF page: 189PDF page: 189PDF page: 189

references 181

Crawford, J. R., & Howell, D. C. (1998). Comparing an individual’s
test score against norms derived from small samples. The Clinical Neu-
ropsychologist, 12(4), 482-486.

Cudeck, R. (2000). An estimate of the covariance between variables
which are not jointly observed. Psychometrika, 65, 539-546.

Culbertson, W. C., & Zillmer, E. A. (1998). The Tower of London
DX: A standardized approach to assessing executive functioning in
children. Archives of Clinical Neuropsychology, 13(3), 285-301.

Curran, P. J., & Hussong, A. M. (2009). Integrative data analysis:
the simultaneous analysis of multiple data sets. Psychological Methods,
14(2), 81-100.

Darst, B. F., Koscik, R. L., Hermann, B. P., La Rue, A., Sager, M.
A., Johnson, S. C., & Engelman, C. D. (2015). Heritability of cogni-
tive traits among siblings with a parental history of Alzheimer’s dis-
ease. Journal of Alzheimer’s Disease, 45(4), 1149-1155.

Delandshere, G. (2001). Implicit theories, unexamined assumptions
and the status quo of educational assessment. Assessment in Education:
Principles, Policy & Practice, 8(2), 113-133.

Delis, D. C., Jacobson, M., Bondi, M. W., Hamilton, J. M., & Salmon,
D. P. (2003). The myth of testing construct validity using factor analy-
sis or correlations with normal or mixed clinical populations: Lessons
from memory assessment. Journal of the International Neuropsychologi-
cal Society, 9(6), 936-946.

DeYoung, C. G., Peterson, J. B., & Higgins, D. M. (2005). Sources
of openness/intellect: Cognitive and neuropsychological correlates of
the fifth factor of personality. Journal of Personality, 73(4), 825-858.

Dowling, N. M., Hermann, B., La Rue, A., & Sager, M. A. (2010).
Latent structure and factorial invariance of a neuropsychological test
battery for the study of preclinical Alzheimer’s disease. Neuropsychol-
ogy, 24, 742-756.

Domellöf, M. E., Ekman, U., Forsgren, L., & Elgh, E. (2015). Cog-
nitive function in the early phase of Parkinson’s disease, a five-year
follow-up. Acta Neurologica Scandinavica, 132(2), 79-88.

Dubois, J., & Adolphs, R. (2016). Building a science of individual
differences from fMRI. Trends In Cognitive Sciences, 20(6), 425-443.

Duff, K. D., Langbehn, D. R., Schoenberg, M. R., Moser, D. J., Baade,
L. E., Mold, J. W., ... Adams, R. L. (2006). Examining the repeatable
battery for the assessment of neuropsychological status: Factor ana-
lytic studies in an elderly sample. The American Journal of Geriatric
Psychiatry, 14, 976-979.

Dupont, W. D., & Plummer, W. D. (1990). Power and sample size
calculations: A review and

computer program. Controlled Clinical Trials, 11(2), 116-128.
Eifler, S., Rausch, F., Schirmbeck, F., Veckenstedt, R., Englisch, S.,

Meyer-Lindenberg, A., ... & Zink, M. (2014). Neurocognitive capabili-



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 190PDF page: 190PDF page: 190PDF page: 190

182 references

ties modulate the integration of evidence in schizophrenia. Psychiatry
Research, 219(1), 72-78.

Elgh, E., Domellöf, M., Linder, J., Edström, M., Stenlund, H., &
Forsgren, L. (2009). Cognitive function in early Parkinson’s disease:
a population-based study. European Journal of Neurology, 16(12), 1278-
1284.

Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C.,
Mizuno, Y., ..., Goldman, J. (2007). Clinical diagnostic criteria for de-
mentia associated with Parkinson’s disease. Movement Disorders, 22(12),
1689-1707.

Enders, C., & Bandalos, D. (2001). The relative performance of
full information maximum likelihood estimation for missing data in
structural equation models. Structural Equation Modeling: A Multidisci-
plinary Journal, 8, 430–457.

Enders, C. K. (2006). A primer on the use of modern missing-data
methods in psychosomatic medicine research. Psychosomatic Medicine, 68,
427-436.

Evans, S. J., Elliott, G., Reynders, H., & Isaac, C. L. (2014). Can
temporal lobe epilepsy surgery ameliorate accelerated long-term for-
getting? Neuropsychologia, 53, 64-74.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J.
(1999). Evaluating the use of exploratory factor analysis in psycholog-
ical research. Psychological Methods, 4, 272-299.

Feise, R. J. (2002). Do multiple outcome measures require p-value
adjustment? BMC Medical Research Methodology, 2(8), 1-4.

Fernaeus, S. E., Östberg, P., Wahlund, L. O., & Hellström, Å. (2014).
Memory factors in Rey AVLT: implications for early staging of cogni-
tive decline. Scandinavian Journal of Psychology, 55(6), 546-553.

Ferreira, N. V., Cunha, P. J., da Costa, D. I., dos Santos, F., Costa,
F. O., Consolim-Colombo, F., & Irigoyen, M. C. (2015). Association
between functional performance and executive cognitive functions in
an elderly population including patients with low ankle–brachial in-
dex. Clinical Interventions in Aging, 10, 839-847.

Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London:
SAGE publications.

Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). “Mini-mental
state”: a practical method for grading the cognitive state of patients
for the clinician. Journal of Psychiatric Research, 12(3), 189-198.

Fortin, A., & Caza, N. (2014). A validation study of memory and
executive functions indexes in French-speaking healthy young and
older adults. Canadian Journal on Aging/La Revue canadienne du vieil-
lissement, 33(1), 60-71.

Gallagher, P., Gray, J. M., Watson, S., Young, A. H., & Ferrier, I. N.
(2014). Neurocognitive functioning in bipolar depression: a compo-
nent structure analysis. Psychological Medicine, 44(5), 961-974.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 191PDF page: 191PDF page: 191PDF page: 191

references 183

Galtier, I., Nieto, A., Lorenzo, J. N., & Barroso, J. (2016). Mild cog-
nitive impairment in Parkinson’s disease: Diagnosis and progression
to dementia. Journal
of Clinical and Experimental Neuropsychology, 38(1), 40-50.

Ganguli, M., Chang, C. C. H., Snitz, B. E., Saxton, J. A., Vander-
bilt, J., & Lee, C. W. (2010). Prevalence of mild cognitive impairment
by multiple classifications: the Monongahela-Youghiogheny Healthy
Aging Team (MYHAT) project. The American Journal of Geriatric Psychi-
atry, 18(8), 674-683.

Gasca-Salas, C., Estanga, A., Clavero, P., Aguilar-Palacio, I., González-
Redondo, R., Obeso, J. A., & Rodríguez-Oroz, M. C. (2014). Longitu-
dinal assessment of the pattern of cognitive decline in non-demented
patients with advanced Parkinson’s disease. Journal of Parkinson’s Dis-
ease, 4(4), 677-686.

Gavett, B. E. (2015). The value of Bayes’ theorem for interpreting ab-
normal test scores in cognitively healthy and clinical samples. Journal
of the International Neuropsychological Society, 21(3), 249-257.

Gordon, A. Y. (2011). A new optimality property of the Holm step-
down procedure. Statistical Methodology, 8(2), 129-135.

Gordon, A. Y., & Salzman, P. (2008). Optimality of the Holm proce-
dure among general step-down multiple testing procedures. Statistics
& Probability Letters, 78(13), 1878-1884.

González-Redondo, R., Toledo, J., Clavero, P., Lamet, I., García-García,
D., García-Eulate, R., ..., Rodríguez-Oroz, M. C. (2012). The impact of
silent vascular brain burden in cognitive impairment in Parkinson’s
disease. European Journal of Neurology, 19, 1100–1107

Graham, J. W. (2003). Adding missing-data-relevant variables to
FIML-based structural equation models. Structural Equation Model-
ing, 10, 80-100.

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E.
(2006). Planned missing data designs in psychological research. Psy-
chological Methods, 11, 323-343.

Graham, J. W. (2009). Missing data analysis: Making it work in the
real world. Annual Review of Psychology, 60, 549-576.

Grasman, R. P. P. P., Huizenga, H. M., & Geurts, H. M. (2010). De-
parture from normality in multivariate normative comparison: The
Cramér alternative for Hotelling’s T2. Neuropsychologia, 48, 1510–1516.

Greenaway, M. C., Smith, G. E., Tangalos, E. G., Geda, Y. E., & Ivnik,
R. J. (2009). Mayo Older Americans Normative Studies: Factor analy-
sis of an expanded neuropsychological battery. The Clinical Neuropsy-
chologist, 23, 7-20.

Gross, A. L., Mungas, D. M., Crane, P. K., Gibbons, L. E., MacKay-
Brandt, A., Manly, J. J., ... & Potter, G. G. (2015). Effects of education
and race on cognitive decline: An integrative study of generalizability
versus study-specific results. Psychology and Aging, 30(4), 863-880.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 192PDF page: 192PDF page: 192PDF page: 192

184 references

Hallquist, M., & Wiley, J. (2013). MplusAutomation: Automating
Mplus model estimation and interpretation (Version 0.6-2).

Harvey, P. D. (2012). Clinical applications of neuropsychological as-
sessment. Dialogues in Clinical Neuroscience, 14(1), 91-99.

Hedden, T., & Yoon, C. (2006). Individual differences in executive
processing predict susceptibility to interference in verbal working
memory. Neuropsychology, 20(5), 511-528.

Hedden, T., Mormino, E. C., Amariglio, R. E., Younger, A. P., Schultz,
A. P., Becker, J. A., ... & Rentz, D. M. (2012). Cognitive profile of amy-
loid burden and white matter hyperintensities in cognitively normal
older adults. Journal of Neuroscience, 32(46), 16233-16242.

Hobson, P., & Meara, J. (2004). The risk and incidence of demen-
tia in a cohort of older subjects with Parkinson’s disease int the UK.
Movement Disorders, 19(9), 1043-1049.

Hobson, P., & Meara, J. (2015). Mild cognitive impairment in Parkin-
son’s disease and its progression onto dementia: a 16-year outcome
evaluation of the Denbighshire cohort. International Journal of Geriatric
Psychiatry, 30(10), 1048-1055.

Holm, S. (1979). A simple sequentially rejective multiple test proce-
dure. Scandinavian Journal of Statistics, 6, 65-70.

Hoogland, J., Boel, J. A., de Bie, R. M., Geskus, R.B., Schmand, B. A.,
Dalrymple-Alford, J. C., . . . , Geurtsen, G.J. (2017). Mild cognitive im-
pairment as a risk factor for Parkinson’s disease dementia. Movement
Disorders, 32(7), 1056-1065.

Horvat, P., Richards, M., Malyutina, S., Pajak, A., Kubinova, R., Ta-
mosiunas, A., ... & Bobak, M. (2014). Life course socioeconomic posi-
tion and mid-late life cognitive function in Eastern Europe. Journals
of Gerontology Series B: Psychological Sciences and Social Sciences, 69(3),
470-481.

Huba, G. J. (1985). How unusual is a profile of test scores? Journal
of Psychoeducational Assessment, 3, 321-325.

Hueng, T. T., Lee, I. H., Guog, Y. J., Chen, K. C., Chen, S. S., Chuang,
S. P., ... & Yang, Y. K. (2011). Is a patient-administered depression rat-
ing scale valid for detecting cognitive deficits in patients with major
depressive disorder? Psychiatry and Clinical Neurosciences, 65(1), 70-76.

Hughes, T. A., Ross, H. F., Musa, S., Bhattacherjee, S., Nathan, R. N.,
Mindham, R. H. S., & Spokes, E. G. S. (2000). A 10-year study of the
incidence of and factors predicting dementia in Parkinson’s disease.
Neurology, 54(8), 1596-1603.

Huizenga, H. M., Smeding, H., Grasman, R. P. P. P., & Schmand,
B. (2007). Multivariate normative comparisons, Neuropsychologia, 45,
2534–2542.

Huizenga, H. M., van der Molen, M. W., Bexkens, A., Bos, M. G.,
& van den Wildenberg, W. P. (2012). Muscle or motivation? A stop-
signal study on the effects of sequential cognitive control. Frontiers in
Psychology, 3(126), 1-10.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 193PDF page: 193PDF page: 193PDF page: 193

references 185

Huizenga, H. M., Agelink van Rentergem, J. A., Grasman, R. P. P.
P., Muslimovic, D., & Schmand, B. (2016). Normative comparisons for
large neuropsychological test batteries: User-friendly and sensitive so-
lutions to minimize familywise false positives. Journal of Clinical and
Experimental Neuropsychology, 38, 611-629.

Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-
related change in executive function: Developmental trends and a la-
tent variable analysis. Neuropsychologia, 44(11), 2017-2036.

Jacqmin-Gadda, H., Sibillot, S., Proust, C., Molina, J. M., & Thiébaut,
R. (2007). Robustness of the linear mixed model to misspecified error
distribution. Computational Statistics & Data Analysis, 51, 5142-5154.

Jak, S. (2015). Meta-analytic structural equation modelling. Springer
International Publishing. doi:10.1007/978-3-319-27174-3

Janvin, C., Aarsland, D., Larsen, J. P., & Hugdahl, K. (2003). Neu-
ropsychological profile of patients with Parkinson’s disease without
dementia. Dementia and Geriatric Cognitive Disorders, 15(3), 126-131.

Jewsbury, P. A., Bowden, S. C., & Duff, K. (2016). The Cattell-Horn-
Carroll model of cognition for clinical assessment. Journal of Psychoed-
ucational Assessment, 35(6), 547-567.

Jewsbury, P. A., & Bowden, S. C. (2016). Construct validity of flu-
ency and implications for the factorial structure of memory. Journal of
Psychoeducational Assessment, 35(5), 460–481.

Kafadar, H. (2012). Cognitive model of problem solving. New Sym-
posium, 50(4), 195-206.

Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston Naming
Test. Philadelphia, PA: Lea & Febiger.

Karagiannopoulou, L., Karamaouna, P., Zouraraki, C., Roussos, P.,
Bitsios, P., & Giakoumaki, S. G. (2016). Cognitive profiles of schizoty-
pal dimensions in a community cohort: Common properties of differ-
ential manifestations. Journal of Clinical and Experimental Neuropsychol-
ogy, 38(9), 1050-1063.

Kendall, P. C., Marrs-Garcia, A., Nath, S. R., & Sheldrick, R. C.
(1999). Normative comparisons for the evaluation of clinical signifi-
cance. Journal of Consulting and Clinical Psychology, 67(3), 285-299.

Kesse-Guyot, E., Andreeva, V. A., Lassale, C., Hercberg, S., & Galan,
P. (2014). Clustering of midlife lifestyle behaviors and subsequent
cognitive function: a longitudinal study. American Journal of Public
Health, 104(11), 170-177.

Kim, J., Jeong, J. H., Han, S. H., Ryu, H. J., Lee, J. Y., Ryu, S. H.,
... & Choi, S. H. (2013). Reliability and validity of the short form of
the literacy-independent cognitive assessment in the elderly. Journal
of Clinical Neurology, 9(2), 111-117.

King, G. (2011). Ensuring the data-rich future of the social sciences.
Science, 331(6018), 719-721.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 194PDF page: 194PDF page: 194PDF page: 194

186 references

Kolenikov, S., & Bollen, K. A. (2012). Testing negative error vari-
ances: Is a Heywood case a symptom of misspecification? Sociological
Methods & Research, 41(1), 124-167.

Komulainen, P., Pedersen, M., Hänninen, T., Bruunsgaard, H., Lakka,
T. A., Kivipelto, M., ... & Rauramaa, R. (2008). BDNF is a novel marker
of cognitive function in ageing women: the DR’s EXTRA Study. Neu-
robiology of Learning and Memory, 90(4), 596-603.

Kraemer, H. C., Morgan, G. A., Leech, N. L., Gliner, J. A., Vaske, J.
J., & Harmon, R. J. (2003). Measures of clinical significance. Journal of
the American Academy of Child & Adolescent Psychiatry, 42, 1524-1529.

Krueger, K. R., Wilson, R. S., Bennett, D. A., & Aggarwal, N. T.
(2009). A battery of tests for assessing cognitive function in older
Latino persons. Alzheimer Disease and Associated Disorders, 23(4), 384-
388.

Larrabee, G. J. (2003). Lessons on measuring construct validity: A
commentary on Delis, Jacobson, Bondi, Hamilton, and Salmon. Jour-
nal of the International Neuropsychological Society, 9(6), 947-953.

Larrabee, G. J. (2014). Test validity and performance validity: Con-
siderations in providing a framework for development of an ability-
focused neuropsychological test battery. Archives of Clinical Neuropsy-
chology, 29(7), 695-714.

Laukka, E. J., Lövdén, M., Herlitz, A., Karlsson, S., Ferencz, B.,
Pantzar, A., ... & Bäckman, L. (2013). Genetic effects on old-age cogni-
tive functioning: A population-based study. Psychology and Aging, 28(1),
262-274.

Lehrner, J., Moser, D., Klug, S., Gleiss, A., Auff, E., Pirker, W., &
Pusswald, G. (2014). Subjective memory complaints, depressive symp-
toms and cognition in Parkinson’s disease patients. European Journal
of Neurology, 21(10), 1276-1285.

Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L. (2013). De-
tecting outliers: Do not use standard deviation around the mean, use
absolute deviation around the median. Journal of Experimental Social
Psychology, 49, 764–766

Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012).
Neuropsychological assessment (5th ed.). New York, NY: Oxford Univer-
sity Press.

Li, D., & Dye, T. D. (2013). Power and stability properties of resampling-
based multiple testing procedures with applications to gene oncology
studies. Computational and Mathematical Methods in Medicine, 610297, 1-
11.

Li, S. C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz,
W., & Baltes, P. B. (2004). Transformations in the couplings among
intellectual abilities and constituent cognitive processes across the life
span. Psychological Science, 15, 155-163.

Libon, D. J., Xie, S. X., Eppig, J., Wicas, G., Lamar, M., Lippa, C.,
... & Wambach, D. M. (2010). The heterogeneity of mild cognitive



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 195PDF page: 195PDF page: 195PDF page: 195

references 187

impairment: A neuropsychological analysis. Journal of the International
Neuropsychological Society, 16(1), 84-93.

Liebel, S. W., Jones, E. C., Oshri, A., Hallowell, E. S., Jerskey, B.
A., Gunstad, J., & Sweet, L. H. (2017). Cognitive processing speed
mediates the effects of cardiovascular disease on executive function-
ing. Neuropsychology, 31(1), 44-51.

Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub,
D., Petersen, R. C., ..., Emre, M. (2012). Diagnostic criteria for mild
cognitive impairment in Parkinson’s disease: Movement Disorder So-
ciety Task Force guidelines. Movement Disorders, 27(3), 349-356.

Litvan, I., Aarsland, D., Adler, C. H., Goldman, J. G., Kulisevsky,
J., Mollenhauer, B., ..., Weintraub, D. (2011). MDS task force on mild
cognitive impairment in Parkinson’s disease: Critical review of PD-
MCI. Movement Disorders, 26(10), 1814-1824.

Llinàs-Reglà, J., Vilalta-Franch, J., López-Pousa, S., Calvó-Perxas,
L., Torrents Rodas, D., & Garre-Olmo, J. (2017). The trail making test:
Association with other neuropsychological measures and normative
values for adults aged 55 years and older from a Spanish-speaking
population-based sample. Assessment, 24(2), 183-196.

Maas, A. I., Stocchetti, N., & Bullock, R. (2008). Moderate and se-
vere traumatic brain injury in adults. The Lancet Neurology, 7(8), 728-
741.

van der Maas, H. L., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J.
M., Huizenga, H. M., & Raijmakers, M. E. (2006). A dynamical model
of general intelligence: the positive manifold of intelligence by mutu-
alism. Psychological Review, 113(4), 842-861.

MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999).
Sample size in factor analysis. Psychological Methods, 4(1), 84-99.

Mamikonyan, E., Moberg, P. J., Siderowf, A., Duda, J. E., Ten Have,
T., Hurtig, H. I., Stern, M.B„ & Weintraub, D. (2009). Mild cognitive
impairment is common in Parkinson’s disease patients with normal
Mini-Mental State Examination (MMSE) scores. Parkinsonism & Re-
lated Disorders, 15(3), 226-231.

McCaffrey, R. J., & Westervelt, H. J. (1995). Issues associated with re-
peated neuropsychological assessments. Neuropsychology Review, 5(3),
203-221.

McGrew, K. S. (2009). CHC theory and the human cognitive abili-
ties project: Standing on the shoulders of the giants of psychometric
intelligence research. Intelligence, 37, 1-10.

Meyer, A. C., Boscardin, W. J., Kwasa, J. K., & Price, R. W. (2013). Is
it time to rethink how neuropsychological tests are used to diagnose
mild forms of HIV-associated neurocognitive disorders? Impact of
false-positive rates on prevalence and power. Neuroepidemiology, 41,
208-216.

Miller, J. B., & Barr, W. B. (2017). The technology crisis in neuropsy-
chology. Archives of Clinical Neuropsychology, 32, 541-554.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 196PDF page: 196PDF page: 196PDF page: 196

188 references

Mitchell, M. B., Shaughnessy, L. W., Shirk, S. D., Yang, F. M., & Atri,
A. (2012). Neuropsychological test performance and cognitive reserve
in healthy aging and the Alzheimer’s disease spectrum: A theoreti-
cally driven factor analysis. Journal of the International Neuropsycholog-
ical Society, 18, 1071-1080.

Mohn, C., Lystad, J. U., Ueland, T., Falkum, E., & Rund, B. R. (2017).
Factor analyzing the Norwegian MATRICS consensus cognitive bat-
tery. Psychiatry and Clinical Neurosciences, 71(5), 336-345.

Moore, A. R., & O’Keeffe, S. T. (1999). Drug-induced cognitive im-
pairment in the elderly. Drugs & Aging, 15(1), 15-28.

Moran, M. D. (2003). Arguments for rejecting the sequential Bon-
ferroni in ecological

studies. Oikos, 100(2), 403-405.
Morrens, M., Hulstijn, W., Matton, C., Madani, Y., Van Bouwel, L.,

Peuskens, J., & Sabbe, B. G. C. (2008). Delineating psychomotor slow-
ing from reduced processing speed in schizophrenia. Cognitive Neu-
ropsychiatry, 13(6), 457-471.

Morris, J. C. (1993). The Clinical Dementia Rating (CDR): Current
version and scoring rules. Neurology, 43(11), 2412-2414.

Morrison, S. L., & Morris, J. N. (1959). Epidemiological observa-
tions on high blood-pressure without evident cause. The Lancet, 274(7108),
864-870.
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Het doel van dit proefschrift was om de betrouwbaarheid van neu-
ropsychologisch onderzoek te vergroten, door de normatieve verge-
lijkingsprocedure te verbeteren. Het eerste doel was om multivariate
normatieve vergelijkingen mogelijk te maken, die het hele profiel van
een patiënt toetsen. Het tweede doel was om normatieve vergelijkin-
gen mogelijk te maken die gecorrigeerd zijn voor leeftijd, sekse en
opleiding. Er waren twee voorwaarden voor het behalen van deze
doelen. In de eerste plaats moest er een normatieve database worden
opgesteld met veel, demografisch diverse, gezonde deelnemers. Daar-
naast moesten er statistische methodes ontwikkeld worden voor het
maken van multivariate normatieve vergelijkingen met deze norma-
tieve database. Deze statistische methoden vormden het onderwerp
van dit proefschrift. In hoofdstuk twee hebben we beschreven hoe een
geaggregeerde normatieve database kan worden gebouwd door data
van gezonde personen uit meerdere studies te combineren. Deze men-
sen kunnen hebben deelgenomen als proefpersonen in een controle-
groep in een klinische studie, of kunnen hebben meegedaan aan een
groot bevolkingsonderzoek. Door veel van zulke groepen te combine-
ren, kunnen veel data van verschillende neuropsychologische taken
worden verzameld. De procedures werden gestandaardiseerd voor de
verschillende tests. Dit hield twee procedures in voor het opschonen
van de data. Ten eerste werden waarden verwijderd die buiten een
vooraf gedefinieerd bereik van toelaatbare scores lagen dat vooraf
was vastgesteld op basis van klinische expertise. Ten tweede werden
waarden verwijderd die zeer onwaarschijnlijk waren gegeven de leef-
tijd, sekse en opleiding van de deelnemers. Om te bepalen welke
demografische variabelen zouden worden gebruikt in de demogra-
fische correcties, werd gebruik gemaakt van het Akaike Informatie
Criterium. Om gebruik te kunnen maken van parametrische statistiek
zoals parametrische normatieve vergelijkingen, zouden scores ideali-
ter normaal verdeeld zijn, of getransformeerd moeten worden zodat
zij normaal verdeeld zijn. Voor de selectie van de macht tot waar de
data moesten worden verheven opdat deze normaal verdeeld waren,
hebben wij gebruikgemaakt van de Box-Cox procedure (Box & Cox,
1964). Tot slot wordt de inhoud van de ANDI-database ook in dit
hoofdstuk beschreven.

In hoofdstuk drie hebben we beschreven hoe met een geaggre-
geerde database multivariate normatieve vergelijkingen kunnen wor-
den gemaakt. Hiervoor is een model nodig dat bestaat uit drie ge-
deelten. Ten eerste was er om demografische correcties uit te kunnen
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voeren voor leeftijd, geslacht en opleidingsniveau een regressiemodel
nodig, om regressiecoëfficiënten te kunnen schatten voor deze drie
demografische variabelen. Ten tweede zouden er verschillen kunnen
bestaan tussen studies in de scores die gezonde proefpersonen beha-
len, bijvoorbeeld door verschillen tussen studies in hoe de steekproef
geselecteerd was, of hoe de testen werden afgenomen. Daarom was
een multilevel model nodig, om de verschillen tussen studies te mo-
delleren. Ten derde houden multivariate normatieve vergelijkingen
rekening met de relaties tussen scores op verschillende tests. Om de
covariantie tussen scores te schatten was een multivariaat model no-
dig. Om deze onderdelen samen te voegen, werd een multivariaat
multilevel regressiemodel geformuleerd. Dit multivariate multilevel
regressiemodel heeft als bijkomend voordeel dat het ook kan wor-
den toegepast wanneer er ontbrekende waardes zijn binnen de test-
variabelen. Vanwege de geaggregeerde structuur van de database is
een grote hoeveelheid ontbrekende waardes te verwachten, omdat
tests die niet zijn afgenomen in een bepaalde studie alleen maar ont-
brekende waardes hebben voor de deelnemers in deze studie. Met
behulp van het multivariate multilevel regressiemodel kunnen alle
componenten die nodig zijn voor multivariate normatieve vergelijkin-
gen worden geschat: de demografisch gecorrigeerde gemiddelden, de
varianties en de covarianties. In een simulatiestudie werden de pres-
taties van de multivariate normatieve vergelijkingenprocedure geëva-
lueerd, met verschillende hoeveelheden ontbrekende waardes en tus-
senstudievariantie. Gevonden werd dat hoewel het model kan wor-
den toegepast met ontbrekende waardes, dit niet mogelijk is als er
ontbrekende overlap is tussen tests. Dit probleem wordt behandeld
in hoofdstuk vier.

In hoofdstuk vier hebben we beschreven hoe het model uit hoofd-
stuk drie kan worden uitgebreid om ontbrekende overlap tussen tests
op te vangen. Er ontbreekt overlap tussen twee tests als de combinatie
van deze twee tests nooit is afgenomen in een van de studies die zijn
opgenomen in de database. Dit maakt het onmogelijk om de covarian-
tie tussen deze twee tests direct te schatten. In dit hoofdstuk worden
twee methoden behandeld die dit probleem zouden kunnen oplossen.
De eerste is multipele imputatie, waarmee waardes worden ingevuld
voor elke ontbrekende waarde. Met deze ingevulde waardes kan de
covariantie op een eenvoudige manier worden geschat. De tweede is
een factormodelbenadering, waarbij een model voor de covariantie-
structuur wordt geschat. Dit model gaat ervan uit dat de covariantie
tussen tests kan worden beschreven door middel van de afhankelijk-
heid van deze tests op eenzelfde latente variabele. In een simulatieon-
derzoek werden de twee methoden vergeleken. De multipele imputa-
tiebenadering houdt het aantal fout-positieven onder controle, maar
vanwege onderschatting van de covariantie tussen tests is zij minder
gevoelig voor het detecteren van daadwerkelijke afwijkingen dan de
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factormodelbenadering. Een vereiste voor de factormodelbenadering
is de geschiktheid van het factormodel voor de data. Als het factor-
model niet past neemt het aantal fout-positieven toe. Daarom moet
een factormodel voor neuropsychologische tests worden vastgesteld
voordat deze benadering kan worden toegepast. Dit probleem wordt
in hoofdstuk vijf behandeld.

In hoofdstuk vijf wordt, in twee studies, vergeleken hoe verschil-
lende factormodellen voor neuropsychologische tests passen. Voor de
eerste studie, een meta-analyse, zijn de correlatiematrices van neuro-
psychologische tests opgevraagd van gepubliceerde studies. De cor-
relatie van de testscores met demografische variabelen werd uit de
correlatie tussen tests verwijderd. Vervolgens zijn de correlatiematri-
ces samengevoegd in een enkele correlatiematrix, waarop factormo-
dellen kunnen worden gepast. In de tweede studie zijn factormodel-
len gepast op demografisch gecorrigeerde data uit de ANDI-database.
In beide studies wordt door middel van modelvergelijkingen aange-
toond dat het Cattell-Horn-Carroll-model zoals aangepast door Jews-
bury et al. (2016) het beste past. Dit model is oorspronkelijk ontwik-
keld in intelligentieonderzoek. Het verdeelt het cognitief functioneren
zoals gemeten door neuropsychologische tests in domeinen van "Ver-
worven kennis of gekristalliseerde vaardigheid", "Verwerkingssnel-
heid", "Encoderen en ophalen bij langetermijngeheugen", "Werkge-
heugen", en "Woordfluency". Dit is in tegenstelling tot andere model-
len die cognitief functioneren verdelen in domeinen van "Aandacht",
"Executief functionerenën "Geheugen". Omdat het model van Cattell-
Horn-Carroll goed lijkt te passen op data van gezonde mensen, kan
dit model in ANDI worden gebruikt om de methoden uit hoofdstuk
vier toe te passen.

In hoofdstuk zes worden de in dit proefschrift ontwikkelde metho-
den empirisch getoetst. De ANDI-database en multivariate norma-
tieve vergelijkingen zijn gebruikt in een heranalyse van longitudinale
gegevens van een onderzoek naar de ziekte van Parkinson en demen-
tie (Broeders et al., 2013). Deze data zijn eerder geanalyseerd met
de conventionele (univariate) criteria voor milde cognitieve stoornis-
sen bij de ziekte van Parkinson (PD-MCI, Parkinson’s Disease-Mild
Cognitive Impairment; Litvan et al., 2012). Het doel van de studie
van Broeders et al. (2013) was om te onderzoeken of degenen die
bij de eerste meting aan de PD-MCI-criteria voldeden, op een later
meetmoment dementie zouden hebben ontwikkeld. In dit hoofdstuk
werden de resultaten van deze studie vergeleken met resultaten ver-
kregen met de ANDI-database. Ten eerste leverde de toepassing van
de univariate PD-MCI-criteria met de ANDI-database voorzichtiger
resultaten op dan het eerdere onderzoek: bij minder patiënten werd
een milde cognitieve stoornis vastgesteld. Dit was het geval bij zowel
patiënten die later dementie ontwikkelden als bij patiënten die geen
dementie ontwikkelden. Ten tweede blijken multivariate normatieve
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vergelijkingen met de ANDI-database betere voorspellingen te bieden
dan de conventionele PD-MCI-criteria: ze zijn zowel meer sensitief als
meer specifiek in het voorspellen van wie dementie ontwikkelt. Dit
wijst erop dat de hier beschreven methoden nuttig zijn bij het verbe-
teren van neuropsychologisch onderzoek.

In hoofdstuk zeven keren we terug naar het probleem van het ge-
bruik van univariate normatieve vergelijkingen in de klinische neu-
ropsychologie. Als er geen correctie wordt gebruikt en er veel uni-
variate normatieve vergelijkingen worden uitgevoerd voor veel ver-
schillende testvariabelen, neemt het aantal keren toe dat cognitie bij
gezonde mensen ook als afwijkend wordt beschouwd. Dit houdt in
dat er een verhoogd fout-positievenpercentage bestaat voor een groep
statistische toetsen. Dit kan hebben bijgedragen aan de lagere specifi-
citeit voor de PD-MCI-criteria in hoofdstuk zes. Om voor dit toegeno-
men fout-positievenpercentage te corrigeren, zijn correctiemethoden
ontwikkeld. Een correctiemethode die in de wetenschap veel wordt
gebruikt, maar niet zozeer in de klinische praktijk, is de Bonferroni-
correctie. Deze correctie verlaagt het aantal fout-positieven, maar kan
de kans schaden dat daadwerkelijke afwijkingen worden opgespoord.
In dit hoofdstuk worden verfijndere correctiemethoden besproken
en vergeleken in een simulatieonderzoek, specifiek voor de situatie
waarin patiënten worden vergeleken met een geaggregeerde database.
Een nieuwe stapsgewijze methode presteerde in veel gevallen beter
dan de Bonferroni-correctie bij het detecteren van stoornissen, maar
vertoonde wel een toename van fout-positieven als veel data ontbra-
ken. Daarom is het te vroeg om één van de methoden als de beste
aan te wijzen.

Dit proefschrift ging gepaard met de bouw van de ANDI-database
en -website. Voor dit project hebben onderzoeksgroepen uit Neder-
land en België ruimhartig data geschonken van 27.000 deelnemers. In
het ANDI-project zijn de methodes gebruikt die zijn beschreven in
hoofdstuk twee en drie. De website zal nog worden uitgebreid met
de methode die in hoofdstuk vier is beschreven, gebruikmakend van
het model dat in hoofdstuk vijf is beschreven.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 211PDF page: 211PDF page: 211PDF page: 211

14
ACKNOWLEDGEMENTS - DANKWOORD

Hilde, eeuwig dank voor de afgelopen vijf jaar. Onder jouw hoede
ben ik gegroeid, omdat je me altijd een voedingsbodem en bescher-
ming bood. En deze plantenmetafoor is niet geheel toevallig. Ben, het
was een eer om bij jou te mogen promoveren, wat helemaal niet klopt
met hoe zorgzaam en gezellig het voelde. Jaap, met plezier heb ik met
je samengewerkt, en ik heb zo het gevoel dat dat nog wel even blijft.

Roy, Marieke, Frans, Conor, ik ben zo blij dat jullie in mijn commis-
sie wilden. Heel veel dank.

Sanne en Hilde, dank dat jullie in mijn commissie plaats hebben
willen nemen, en heel veel dank voor jullie vertrouwen. Ik werk met
bijzonder veel zin en plezier in het werk met jullie samen.

Nathalie, work spouse, het klikte meteen, en we hebben vervolgens
vier jaar lang gekibbeld. Het is wennen om niet meer dagelijks aan je
keiharde humor blootgesteld te worden ;-). Ik ben trots op ons.

Django, paranimf, dank voor je tientallen jaren aan vriendschap. Ik
zou een ander, ongelukkiger, slechter, mens geweest zijn zonder jou.

Tycho, seriële co-auteur, dank dat je me in zoveel dingen hebt be-
trokken en gesteund. Daar zijn de afgelopen vier jaar zoveel leuker
en rijker door geworden.

Jacqueline, mijn oud-student en collega, dank dat je het allemaal
zo goed hebt gedaan. Een these, een AiO-plek, een keertje submitten,
en nu staat je eerste artikel in dit proefschrift, veel dank!

Laura, dank voor de regelmatige avonden samen werken, je goede
zorgen, al de thee en dat ik je altijd mocht storen als ik weer eens een
verhaal wilde vertellen, heel lief.

Rooske, ik geloof dat jij en ik het over alles eens zijn, en we hebben
inmiddels wat onderwerpen gehad. Heel veel dank voor je vriend-
schap.

Helen, zo lang hebben we niet samengewerkt, maar toch was je
meteen een steun en toeverlaat. Dank je wel.

Riëtte en Eline, dank voor de gezellige samenwerking op de twee
papers met Hilde.

Daan, Maaike, jullie zijn als kamergenoten zo stevig gebleken, dat
ik jullie nooit ergens mee heb mogen helpen. Het gaat jullie goed, en
dat zal zo blijven.

Janneke, dank voor de zoekskills die je me hebt geleerd. Ik heb er
veel baat bij gehad, en heb dat nog steeds.

ANDI consortium, dank jullie wel! ANDI stond of viel natuurlijk
met jullie data, dus veel dank voor jullie bijdrage en jullie hulp.



517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink517531-L-bw-Agelink
Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018Processed on: 26-2-2018 PDF page: 212PDF page: 212PDF page: 212PDF page: 212

204 acknowledgements - dankwoord

eScience center, thank you for creating the ANDI website! It has
been good working together with you, and I learnt a lot. This PhD
project was better for it. Mateusz, Janneke, Anand, Lars, thank you.

Bas, onze samenwerking had bepaald een wervelwindkwaliteit, en
dat lag meer aan jou dan aan mij. Dank dat je mij in dat projectje hebt
willen betrekken.

Mijke, Raoul, Dora, Dylan, Robert, veel dank voor jullie meedenken
met mijn methodologische issues, het heeft echt geholpen.

Dear students, beste studenten, thank you for listening and wat-
ching me doodle. I do hope some of it made sense. Robin, Carlijn,
Odette en Liza, veel dank dat jullie mijn eerste en meteen favoriete
bachelorgroep hebben willen zijn.

Brenda, dank voor de mooie open manier waarmee je mij altijd
tegemoet bent getreden. Helle, je kreeg als mede-organisator een to-
taal onorganisatorisch type, maar dankzij je geduld en liefheid bleek
het samen organiseren van Rita Vuyk een leuke klus, waarvoor veel
dank. Annematt, dank voor je enthousiasme en je stimulerende ge-
sprekken, waarvan ik verwacht dat er nog wel zullen volgen. Patrick,
dank voor je verhalen, en natuurlijk dank voor het verbeteren van
mijn Engels, waarbij je mijn trots ook hebt weten te sparen. Kiki, it’s
been a while, but I do remember fondly our conversations back at the
Diamantbeurs. Bram, dank voor alle praatjes die we hebben gemaakt
als we elkaar “toevallig” tegenkwamen. Gorka, live long and prosper.
Ellen, dank voor alle gezelligheid en hulp, en ons tweemansmuseum-
clubje. Helma, Eveline, Hubert, dank voor de hulp bij onmogelijke
verzoeken. Annemie, dank voor de gezelligheid, en het onverwachte
inspirerende boek! Tjitske, dank dat ik (en de rest van de afdeling) op
je heb mogen bouwen. Er ontbreken nog veel mensen, a lot of people
are still missing from this list. Thank you all for the time I have had
the past four years.

Conor, Lourens, Harrie, Jelte, Denny, Philippe, Renée, Ineke, jullie
hebben mij op de cruciale momenten op de basisschool, middelbare
school en universiteit, aan mijn haren uit het moeras getrokken. Ik
kan dus ook met alle zekerheid zeggen dat dit proefschrift er zonder
jullie niet geweest was, want zonder jullie hulp was ik er nooit aan
begonnen. Veel dank! Eveline, zonder jouw ontzettend lieve steun en
tips was dit allemaal ook nooit wat geworden.

Tsjangis, Luitzen, Ruben, Santi, Joeri, dank voor jullie vriendschap.
En de rest van de familie en vriendenclub natuurlijk ook.

LLLT.

Met vriendelijke groet,
Joost








